pattern_matcher.h 13.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif

#include <memory>
#include <numeric>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "lite/core/mir/node.h"
#include "lite/core/mir/ssa_graph.h"
#include "lite/model_parser/pb/op_desc.h"
#include "lite/utils/cp_logging.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace mir {
class PMPattern;

// Some basic terminologies:
//   - PMPattern: a pattern defined as a data flow graph.
//   - PMNode: the node in the pattern, each PMNode represents an `mir::Node`
//     that meets some conditions defined in `PMNode.teller`.
//   - A pattern is defined with PMNodes with edges.

// Pattern matcher node. This node helps to build a pattern.
struct PMNode {
  // tell whether an mir::Node* is a candidation for a PMNode.
  using teller_t = std::function<bool(const Node*)>;
  enum class Type { kOp, kVar };
  enum class Role {
    kUnknown,      // No role,
    kInput,        // an input and will be retained,
    kOutput,       // an output and will be retained,
    kIntermediate  // will be removed after handler.
  };

  // this link to others
  PMNode& LinksTo(const std::vector<PMNode*>& others);
  PMNode& LinksFrom(const std::vector<PMNode*>& others);

  // Link this to another node.
  PMNode& operator>>(PMNode& right);

  // Link many nodes to this node.
  friend PMNode& operator>>(std::vector<PMNode*>& others, PMNode& me);

  // Link this to many other nodes.
  PMNode& operator>>(std::vector<PMNode*>& nodes);

  bool Tell(const Node* node) const {
    if (teller_) return teller_(node);

    for (auto& asrt : asserts_) {
      if (!asrt(node)) return false;
    }
    return true;
  }

  bool IsOp() const { return type_ == Type::kOp; }
  bool IsVar() const { return type_ == Type::kVar; }

  const std::string& name() const { return name_; }

  PMNode& operator=(const PMNode&) = delete;
  PMNode(const PMNode&) = delete;

  // Mark this node is an Input of a subgraph and will be retained.
  PMNode* AsInput() {
    role_ = Role::kInput;
    return this;
  }
  // Mark this node is an Output of a subgraph and will be retained.
  PMNode* AsOutput() {
    role_ = Role::kOutput;
    return this;
  }
  // Mark this node will be removed, so all the links should be inside a matched
  // sub-graph.
  PMNode* AsIntermediate() {
    role_ = Role::kIntermediate;
    return this;
  }

  PMNode* AsVar() {
    type_ = Type::kVar;
    assert_is_var();
    return this;
  }

  PMNode* AsOp(const std::string& op_type) {
    type_ = Type::kOp;
    assert_is_op(op_type);
    return this;
  }

  void set_op_type(const std::string& op_type) { op_type_ = op_type; }

  bool IsIntermediate() const { return role_ == Role::kIntermediate; }
  bool IsInput() const { return role_ == Role::kInput; }
  bool IsOutput() const { return role_ == Role::kOutput; }

  // Assertions, helper functions to simplify the pattern definition.
  PMNode* assert_is_op();
  PMNode* assert_is_op(const std::string& op_type);
  PMNode* assert_is_var();
  PMNode* assert_var_not_persistable();
  PMNode* assert_is_persistable_var();
  PMNode* assert_is_op_output(const std::string& op_type);
  PMNode* assert_is_op_input(const std::string& op_type);
  PMNode* assert_is_op_input(const std::string& op_type,
                             const std::string& argument);
  PMNode* assert_is_op_output(const std::string& op_type,
                              const std::string& argument);

  PMNode* assert_is_op_nth_input(const std::string& op_type,
                                 const std::string& argument,
                                 int nth);
  PMNode* assert_is_op_nth_output(const std::string& op_type,
                                  const std::string& argument,
                                  int nth);

  template <typename T>
  PMNode* assert_op_attr(const std::string& attr_name, const T& attr) {
    asserts_.push_back([=](const Node* x) {
      if (x && x->IsStmt()) {
        auto* op_info = x->stmt()->op_info();
        return op_info->HasAttr(attr_name) &&
               op_info->GetAttr<T>(attr_name) == attr;
      }
      return false;
    });
    return this;
  }

 private:
  PMNode(PMPattern* pattern,
         const std::string& name = "",
         Type type = Type::kVar)
      : pattern_(pattern), name_(name), type_(type) {}
  PMNode(teller_t&& teller,
         PMPattern* pattern,
         const std::string& name = "",
         Type type = Type::kVar)
      : teller_(std::move(teller)),
        pattern_(pattern),
        name_(name),
        type_(type) {
    CHECK(teller_ != nullptr) << "invalid teller functer is set.";
  }

  PMNode(PMNode&& other) = default;

  friend class PMPattern;

  // Will removed latter.
  teller_t teller_;
  std::vector<teller_t> asserts_;
  PMPattern* pattern_;
  std::string name_;
  std::string op_type_;
  Type type_;
  Role role_{Role::kUnknown};
};

/*
 * A pattern in a graph, which defined with PMNode and edges. Most graph
 * patterns can be divided into PMNodes and link relations between them.
 *
 * For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
 * operators from the computation graph, the MUL's output should have only one
 * consumer which is the ELEMENTWISE_ADD.
 * This pattern can be defined as with the following pseudo codes
 *
 *     // Create two operator PMNodes.
 *     MUL = PMPattern.NewNode().assert_is_op("mul");
 *     ELE = PMPattern.NewNode().assert_is_op("elementwise_add");
 *     // Create the variable PMNodes.
 *     MUL_out = PMPattern.NewNode().assert_is_op_output("mul") \
 *                                  .assert_is_op_input("elementwise_add") \
 *                                  .AsIntermediate();
 *     // Add relations.
 *     MUL->LinksTo({MUL_out});
 *     MUL_out->LinksTo({ELE});
 *
 * One can add more specific asserts for PMNodes or edges, both the Operator
 * and Variable Nodes can be ruled in PMNode.assert_more(...).
 *
 * PMPattern can record the general patterns, such as the pattern represents
 *   - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
 *   - Ops whose inputs and outputs share the same variables
 */
class PMPattern {
 public:
  using edge_t = std::pair<PMNode*, PMNode*>;

  void AddEdge(PMNode* a, PMNode* b);

  PMNode* NewNode(PMNode::teller_t&& teller, const std::string& name = NewID());
  PMNode* NewNode(const std::string& name = NewID());
  PMNode* NewNode(const std::string& prefix, const std::string& name) {
    return NewNode(prefix + "/" + name);
  }
  PMNode* RetrieveNode(const std::string& id) const;

  const std::vector<std::unique_ptr<PMNode>>& nodes() const { return nodes_; }
  const std::vector<edge_t>& edges() const { return edges_; }

  std::string DotString() const;

 private:
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PMPattern, AddEdge);
  FRIEND_TEST(PMPattern, NewNode);
#endif

  static std::string NewID() { return string_format("pmnode-%d", id_++); }

  std::vector<std::unique_ptr<PMNode>> nodes_;
  std::vector<edge_t> edges_;
  std::unordered_map<std::string, PMNode*> node_map_;
  static size_t id_;
};

/*
 * PatternMatcher helps to detect the specific patterns in the graph.
 * Input a pattern, output a list of the matched subgraphs/nodes.
 * This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
 *
 * The algorithm has three phases:
 *   1. Mark the nodes that match the defined PMNodes in a PMPattern,
 *   2. Extend a PMNode to subgraphs by deducing the connection relation defined
 *      in PAPattern(the edges),
 *   3. Get the filtered subgraphs and treat them with a pre-defined handler.
 *
 * Usage:
 *    // Create a matcher
 *    PatternMatcher matcher;
 *    // Define the matcher's pattern, by adding PMNode and define the edges.
 *    auto* node0 = matcher.mutable_pattern().AddNode(...)
 *    auto* node1 = matcher.mutable_pattern().AddNode(...)
 *    node0->teller = some lambda.
 *    node1->teller = some lambda.
 *    matcher.mutable_pattern().AddEdge(node0, node1);
 *    // Create an handler, to define the behavior of treating the filtered
 *    // subgraphs that comply with the patterns.
 *    PatternMatcher::handle_t handler = some labmda
 *    // Execute the matcher.
 *    matcher(&graph, handler);
 */
class PatternMatcher {
 public:
  using subgraph_t = std::unordered_map<PMNode*, Node*>;

  // Operate on the detected pattern.
  using handle_t =
      std::function<void(const subgraph_t& /*hitted pattern*/, SSAGraph*)>;

  void operator()(SSAGraph* graph, handle_t handler);

  const PMPattern& pattern() const { return pattern_; }
  PMPattern* mutable_pattern() { return &pattern_; }

 private:
  // Mark the nodes that fits the pattern.
  bool MarkPMNodesInGraph(SSAGraph* graph);

  // Detect all the pattern and output the hit records.
  std::vector<subgraph_t> DetectPatterns();

  // Remove duplicate patterns.
  void UniquePatterns(std::vector<subgraph_t>* subgraphs);

  // Remove overlapped match subgraphs, when overlapped, keep the previous one.
  // The intermediate PMNodes will be removed, so can't shared by multiple
  // patterns.
  void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);

  // Validate whether the intermediate nodes are linked by external nodes.
  void ValidateByNodeRole(std::vector<subgraph_t>* subgraphs);

#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PatternMatcher, MarkPMNodesInGraph);
  FRIEND_TEST(PatternMatcher, DetectPatterns);
#endif

 private:
  using hit_rcd_t =
      std::pair<Node* /*node in graph*/, PMNode* /*node in pattern*/>;
  PMPattern pattern_;
  std::unordered_map<const PMNode*, std::unordered_set<Node*>> pmnodes2nodes_;
};

// Check whether a var node is a op node's nth input.
bool IsNthInput(const Node& var,
                const Node& op,
                const std::string& argument,
                int nth);

// Check whether the op node has input of given name.
bool HasInput(const Node& op, const std::string& argument);

// Graph safely remove some nodes, will automatically clean up the edges.
void GraphSafeRemoveNodes(SSAGraph* graph,
                          const std::unordered_set<const Node*>& nodes);

// Some pre-defined patterns those can be reused in multiple passes.
// The related Fluid Layer or Op should be one pattern here for better re-usage
// across different fusion.
namespace patterns {

struct KeyCounter {
  static KeyCounter& Instance() {
    static KeyCounter x;
    return x;
  }

  int IncCounter(const std::string& key) { return dic_[key]++; }

 private:
  std::unordered_map<std::string, size_t> dic_;
};

// Generate a unique PMNode's name with name_scope and id.
// The format is {name_scope}/{repr}/{id}/{name}
static std::string PMNodeName(const std::string& name_scope,
                              const std::string& repr,
                              size_t id,
                              const std::string& name) {
  STL::stringstream ss;
  ss << name_scope << "/" << repr << "/" << id << "/" << name;
  return ss.str();
}
// Generate a unique PMNode's name.
// The format is {name_scope}/{repr}/{id}
static std::string PMNodeName(const std::string& name_scope,
                              const std::string& repr) {
  STL::stringstream ss;
  ss << name_scope << "/" << repr << "/"
     << KeyCounter::Instance().IncCounter(repr);
  return ss.str();
}
// Generate a unique key. It can be used for a universally unique temporary
// name.
// The format is {repr}/{id}
static std::string UniqueKey(const std::string& repr) {
  STL::stringstream ss;
  ss << repr << "/" << KeyCounter::Instance().IncCounter(repr);
  return ss.str();
}

// Declare a PMNode in a pattern, will create two methods:
// std::string xxx_repr(); return this PMNode's string id.
// PMNode* xxx_n(); return the corresponding PMNode.
#define PATTERN_DECL_NODE(name__)                        \
  std::string name__##_repr() const {                    \
    return PMNodeName(name_scope_, repr_, id_, #name__); \
  }                                                      \
  PMNode* name__##_n() const { return pattern->RetrieveNode(name__##_repr()); }

// Get an mir::Node* from the matched subgraph.
// var: variable.
// arg: the argument declared by PATTERN_DECL_NODE in a pattern definition.
// pat: the pattern object.
#define GET_IR_NODE_FROM_SUBGRAPH(var, arg, pat)        \
  CHECK(subgraph.count(pat.arg##_n()))                  \
      << "Node not found for PMNode " pat.arg##_repr(); \
  Node* var = subgraph.at(pat.arg##_n());               \
  CHECK(var) << "node " << #arg << "not exists in the sub-graph"

// The base class of all the patterns.
struct PatternBase {
  PatternBase(PMPattern* pattern,
              const std::string& name_scope,
              const std::string& repr)
      : pattern(pattern),
        name_scope_(name_scope),
        repr_(repr),
        id_(KeyCounter::Instance().IncCounter(repr)) {}

  PMPattern* pattern;

 protected:
  std::string name_scope_;
  std::string repr_;
  size_t id_;
};

}  // namespace patterns

// Link two mir::Nodes from each other.
#define IR_NODE_LINK_TO(a, b) \
  a->outlinks.push_back(b);   \
  b->inlinks.push_back(a);

// Set the out_var as the output of the op
#define IR_OP_VAR_LINK(op, out_var) \
  op->outlinks.push_back(out_var);  \
  out_var->inlinks.clear();         \
  out_var->inlinks.push_back(op);

}  // namespace mir
}  // namespace lite
}  // namespace paddle