tensor.h 8.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef LITE_WITH_FPGA
18
#include "lite/backends/fpga/lite_tensor.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
#endif

#ifndef LITE_WITH_FPGA

#include <algorithm>
#include <functional>  // for multiplies
#include <memory>
#include <numeric>
#include <string>
#include <vector>
#include "lite/core/memory.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {

class DDimLite;
class TensorLite;

using DDim = lite::DDimLite;
using Tensor = lite::TensorLite;

class DDimLite {
 public:
  using value_type = int64_t;

  DDimLite() = default;

  explicit DDimLite(const std::vector<value_type> &x) { ConstructFrom(x); }
  // DDimLite(std::initializer_list<value_type> init_list) :
  // DDimLite(std::vector<value_type>(init_list)) {}

  void ConstructFrom(const std::vector<value_type> &x) { data_ = x; }

  value_type operator[](int offset) const { return data_[offset]; }
  value_type &operator[](int offset) { return data_[offset]; }
  std::vector<int64_t> Vectorize() const { return data_; }

  size_t size() const { return data_.size(); }
  bool empty() const { return data_.empty(); }

  value_type production() const;

  const std::vector<value_type> &data() const { return data_; }
  value_type count(int start, int end) const;

  DDimLite Slice(int start, int end) const;

  DDimLite Flatten2D(int col) const {
    return DDimLite(std::vector<value_type>(
        {Slice(0, col).production(), Slice(col, size()).production()}));
  }

  std::string repr() const;

  friend STL::ostream &operator<<(STL::ostream &os, const DDimLite &dims) {
    os << dims.repr();
    return os;
  }

  friend bool operator==(const DDimLite &a, const DDimLite &b) {
    if (a.size() != b.size()) return false;
    for (size_t i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return false;
    }
    return true;
  }

  friend bool operator!=(const DDimLite &a, const DDimLite &b) {
    return !(a == b);
  }

 private:
  std::vector<value_type> data_;
};

using LoD = std::vector<std::vector<uint64_t>>;

// A light-weight tensor implementation.
class TensorLite {
 public:
  TensorLite() : buffer_(std::make_shared<Buffer>()) {}

  template <typename DType, typename DimT, TargetType Target>
  void Assign(DType *data, const DimT &dim) {
    Resize(dim);
    auto *dst = mutable_data<DType, void>(Target);
    CopySync<Target>(
        dst, data, dim.production() * sizeof(DType), IoDirection::HtoD);
  }

  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
  const R *data() const {
116 117
    return reinterpret_cast<const R *>(static_cast<char *>(buffer_->data()) +
                                       offset_);
Y
Yan Chunwei 已提交
118 119 120 121 122 123 124 125 126 127 128 129
  }

  void Resize(const DDimLite &ddim) { dims_ = ddim; }
  void Resize(const std::vector<int64_t> &x) { dims_ = DDimLite(x); }

  const DDimLite &dims() const { return dims_; }
  int64_t numel() const { return dims_.production(); }

  const LoD &lod() const { return lod_; }
  LoD *mutable_lod() { return &lod_; }
  void set_lod(const LoD &lod) { lod_ = lod; }

130 131 132 133 134 135
  PrecisionType precision() const { return precision_; }
  void set_precision(PrecisionType precision) { precision_ = precision; }

  bool persistable() const { return persistable_; }
  void set_persistable(bool persistable) { persistable_ = persistable; }

Y
Yan Chunwei 已提交
136 137 138 139 140
  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
141
  R *mutable_data() {
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    auto type_id = typeid(T).hash_code();
    if (type_id == typeid(bool).hash_code()) {  // NOLINT
      precision_ = PrecisionType::kBool;
    } else if (type_id == typeid(float).hash_code()) {  // NOLINT
      precision_ = PrecisionType::kFloat;
    } else if (type_id == typeid(int8_t).hash_code()) {
      precision_ = PrecisionType::kInt8;
    } else if (type_id == typeid(int16_t).hash_code()) {
      precision_ = PrecisionType::kInt16;
    } else if (type_id == typeid(int32_t).hash_code()) {
      precision_ = PrecisionType::kInt32;
    } else if (type_id == typeid(int64_t).hash_code()) {
      precision_ = PrecisionType::kInt64;
    } else {
      precision_ = PrecisionType::kUnk;
    }
158 159 160 161 162 163 164 165
    memory_size_ = dims_.production() * sizeof(T);
    buffer_->ResetLazy(target_, memory_size_);
    return reinterpret_cast<R *>(static_cast<char *>(buffer_->data()) +
                                 offset_);
  }

#ifdef LITE_WITH_OPENCL
  template <typename T, typename R = T>
166 167 168
  R *mutable_data(const size_t img_w,
                  const size_t img_h,
                  void *host_ptr = nullptr) {
169
    target_ = TARGET(kOpenCL);
170
    buffer_->ResetLazyImage2D<T>(target_, img_w, img_h, host_ptr);
171 172 173
    return static_cast<cl::Image2D *>(buffer_->data());
  }
#endif
Y
Yan Chunwei 已提交
174 175 176 177 178 179

  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
180 181
  R *mutable_data(TargetType target) {
    target_ = target;
182
    return mutable_data<T, R>();
183
  }
Y
Yan Chunwei 已提交
184 185 186 187 188 189 190 191
  void *mutable_data(size_t memory_size);
  void *mutable_data(TargetType target, size_t memory_size);

  const void *raw_data() const {
    return static_cast<char *>(
        (static_cast<char *>(buffer_->data()) + offset_));
  }

192 193 194 195
  void clear() {
    buffer_->Free();
    offset_ = 0;
  }
Y
Yan Chunwei 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  size_t data_size() const { return this->dims().production(); }

  size_t memory_size() const { return memory_size_; }

  size_t offset() const { return offset_; }

  bool IsInitialized() const { return buffer_->data(); }

  // Other share data to this.
  void ShareDataWith(const TensorLite &other);

  void CopyDataFrom(const TensorLite &other);

  TargetType target() const { return target_; }

  template <typename T>
  TensorLite Slice(int64_t begin, int64_t end) const;

  friend STL::ostream &operator<<(STL::ostream &os, const TensorLite &tensor) {
    os << "Tensor:" << '\n';
    os << "dim: " << tensor.dims() << '\n';
    for (int i = 0; i < tensor.dims().production(); i++) {
      os << tensor.template data<float>()[i] << " ";
    }
    os << "\n";
    return os;
  }

 private:
  TargetType target_{TargetType::kHost};
226 227 228 229 230 231 232 233
  // precision_ and persistable_ are only used for persistable vars.
  // If your tensor wants to be saved and loaded correctly, you must
  // set values of precision_ and persistable_ after updating it.
  // If your tensor is just a temp tensor, such as activations,
  // you can ignore these two attributes.
  PrecisionType precision_{PrecisionType::kUnk};
  bool persistable_{false};

Y
Yan Chunwei 已提交
234 235 236 237 238 239 240 241 242 243 244
  DDimLite dims_;
  std::shared_ptr<Buffer> buffer_;
  LoD lod_;
  size_t memory_size_{};

  /// @brief Buffer may be shared with other tensors
  size_t offset_{0};
};

template <typename T>
TensorLite TensorLite::Slice(int64_t begin, int64_t end) const {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  CHECK_GE(begin, 0);
  CHECK_LE(end, dims_[0]);
  CHECK_LT(begin, end);
  if (dims_[0] == 1) {
    return *this;
  } else {
    int64_t base = numel() / dims_[0];
    TensorLite dst;
    dst.buffer_ = buffer_;
    dst.target_ = target_;
    auto dst_dims = dims_;
    dst_dims[0] = end - begin;
    dst.Resize(dst_dims);
    dst.offset_ = offset_ + static_cast<size_t>(begin * base) * sizeof(T);
    return dst;
  }
Y
Yan Chunwei 已提交
261 262 263 264 265 266 267 268 269
}

template <typename TensorT>
bool TensorCompareWith(const TensorT &a, const TensorT &b) {
  if (a.dims() != b.dims()) return false;
  if (memcmp(a.raw_data(), b.raw_data(), a.data_size()) != 0) return false;
  return true;
}

270 271 272
#ifdef LITE_WITH_OPENCL
template <>
const cl::Image2D *TensorLite::data<float, cl::Image2D>() const;
273 274 275

template <>  // use int16_t represent half float
const cl::Image2D *TensorLite::data<int16_t, cl::Image2D>() const;
276 277
#endif

Y
Yan Chunwei 已提交
278 279 280
}  // namespace lite
}  // namespace paddle

281
#endif  // #ifndef LITE_WITH_FPGA