elementwise_compute.cc 11.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/elementwise_compute.h"
#include <string>
#include <vector>
#include "lite/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

inline DDim trim_trailing_singular_dims(const DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
38
    return DDim();
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  }
  return DDim(trim_dims);
}

inline bool is_broadcast(const DDim& x_dims,
                         const DDim& y_dims,
                         int axis,
                         int* pre,
                         int* n,
                         int* post) {
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  DDim y_dim_trim = trim_trailing_singular_dims(y_dims);
53
  axis = (y_dim_trim.size() == 0) ? x_dims.size() : axis;
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  if (x_dims.size() == y_dim_trim.size()) {
    return false;
  }
  *pre = 1;
  *n = 1;
  *post = 1;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dim_trim.size(); ++i) {
    CHECK_EQ(x_dims[i + axis], y_dim_trim[i])
        << "Broadcast dimension mismatch.";
    (*n) *= y_dim_trim[i];
  }
  for (int i = axis + y_dim_trim.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
  return true;
}

void ElementwiseAddCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_add(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseAddActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

void ElementwiseMulCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mul_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_mul(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseMulActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_mul_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_mul_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

void ElementwiseMaxCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_max_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_max(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseMaxActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
void ElementwiseDivCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_div_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_div(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseDivActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_div_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_div_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
  for (int i = 0; i < x_dims.production(); i++) {
    LOG(INFO) << "x:" << x_data[i] << "  y:" << y_data[i]
              << "  out:" << out_data[i];
  }
}

Y
Yan Chunwei 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(elementwise_add,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseAddCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_add_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseAddActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_mul,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseMulCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_mul_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseMulActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_max,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseMaxCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_max_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseMaxActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

REGISTER_LITE_KERNEL(elementwise_div,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseDivCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_div_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseDivActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();