elementwise_grad_compute.cc 7.0 KB
Newer Older
X
xiaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/elementwise_grad_compute.h"
#include <string>
#include <vector>
#include "lite/backends/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

inline DDim trim_trailing_singular_dims(const DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
    return DDim();
  }
  return DDim(trim_dims);
}

inline bool is_broadcast(const DDim& x_dims,
                         const DDim& y_dims,
                         int axis,
                         int* pre,
                         int* n,
                         int* post) {
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  DDim y_dim_trim = trim_trailing_singular_dims(y_dims);
  axis = (y_dim_trim.size() == 0) ? x_dims.size() : axis;
  if (x_dims.size() == y_dim_trim.size()) {
    return false;
  }
  *pre = 1;
  *n = 1;
  *post = 1;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dim_trim.size(); ++i) {
    CHECK_EQ(x_dims[i + axis], y_dim_trim[i])
        << "Broadcast dimension mismatch.";
    (*n) *= y_dim_trim[i];
  }
  for (int i = axis + y_dim_trim.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
  return true;
}

void ElementwiseAddGradCompute::Run() {
  auto& param = Param<operators::ElementwiseGradParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  const float* out_grad_data = param.OutGrad->data<float>();
  float* x_grad_data = param.XGrad->mutable_data<float>();
  float* y_grad_data = param.YGrad->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_grad_broadcast(
        out_grad_data, y_grad_data, x_grad_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_grad_broadcast(
        out_grad_data, x_grad_data, y_grad_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_add_grad(
        out_grad_data, x_grad_data, x_dims.production());
    lite::arm::math::elementwise_add_grad(
        out_grad_data, y_grad_data, y_dims.production());
  }
}

void ElementwiseSubGradCompute::Run() {
  auto& param = Param<operators::ElementwiseGradParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  const float* out_data = param.OutGrad->data<float>();
  float* x_grad_data = param.XGrad->mutable_data<float>();
  float* y_grad_data = param.YGrad->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div grad don't support x_dims size < y_dims size";
  }
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_sub_grad_broadcast(
        out_data, x_grad_data, y_grad_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_sub_grad(
        out_data, x_grad_data, y_grad_data, x_dims.production());
  }
}

template <typename T, PrecisionType PType>
void ElementwiseMulGradCompute<T, PType>::Run() {
  LOG(FATAL) << "elementwise mul_grad not implement yet";
}

void ElementwiseMaxGradCompute::Run() {
  LOG(FATAL) << "elementwise max_grad not implement yet";
}

void ElementwiseDivGradCompute::Run() {
  LOG(FATAL) << "elementwise div_grad not implement yet";
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

using elementwise_mul_grad_float =
    paddle::lite::kernels::arm::ElementwiseMulGradCompute<float,
                                                          PRECISION(kFloat)>;

REGISTER_LITE_KERNEL(elementwise_add_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseAddGradCompute,
                     def)
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Out@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_sub_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseSubGradCompute,
                     def)
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Out@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_div_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseDivGradCompute,
                     def)
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Out@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    elementwise_mul_grad, kARM, kFloat, kNCHW, elementwise_mul_grad_float, def)
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Out@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_max_grad,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseMaxGradCompute,
                     def)
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Out@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("X@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Y@Grad", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();