run.py 17.5 KB
Newer Older
Y
Yanzhan Yang 已提交
1
# -*- coding: utf-8 -*
Y
Yanzhan Yang 已提交
2 3 4 5 6 7 8 9 10 11 12
import os
import sys
import math
import subprocess
import numpy as np
import paddle.fluid as fluid

model_path = "model"
checked_model_path = "checked_model"
feed_path = "feeds"
output_path = "outputs"
Y
Yanzhan Yang 已提交
13
diff_threshold = 0.01
Y
Yanzhan Yang 已提交
14 15
is_lod = False
mobile_model_path = ""
Y
Yanzhan Yang 已提交
16
fast_check = False
17 18 19
is_sample_step = False
sample_step = 1
sample_num = 20
Z
zp7 已提交
20 21
need_encrypt = False
checked_encrypt_model_path = "checked_encrypt_model"
Y
Yanzhan Yang 已提交
22 23

np.set_printoptions(linewidth=150)
Y
Yanzhan Yang 已提交
24 25 26 27 28 29 30

mobile_exec_root = "/data/local/tmp/bin"
mobile_src_root = os.path.abspath("../../../")
if mobile_src_root.endswith("/"):
    mobile_src_root = mobile_src_root[:-1]

dot = "•"
Y
Yanzhan Yang 已提交
31 32 33 34
black = lambda x: "\033[30m" + str(x) + "\033[0m"
red = lambda x: "\033[31m" + str(x) + "\033[0m"
green = lambda x: "\033[32m" + str(x) + "\033[0m"
yellow = lambda x: "\033[33m" + str(x) + "\033[0m"
Y
Yanzhan Yang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
reset = lambda x: "\033[0m" + str(x)

def pp_tab(x, level=0):
    header = ""
    for i in range(0, level):
        header += "\t"
    print(header + str(x))
def pp_black(x, level=0):
    pp_tab(black(x) + reset(""), level)
def pp_red(x, level=0):
    pp_tab(red(x) + reset(""), level)
def pp_green(x, level=0):
    pp_tab(green(x) + reset(""), level)
def pp_yellow(x, level=0):
    pp_tab(yellow(x) + reset(""), level)

def sh(command):
    pipe = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    return pipe.stdout.read().decode("utf-8")
def push(src, dest=""):
    sh("adb push {} {}".format(src, mobile_exec_root + "/" + dest))

pp_yellow(dot + " start inspecting fluid model")

exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())

# 加载模型
def load_model(model_path):
    prog, feeds, fetches = fluid.io.load_inference_model(dirname=model_path, executor=exe, model_filename="model", params_filename="params")
    return (prog, feeds, fetches)

prog, feeds, fetches = load_model(model_path)

# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
70
def resave_model(feed_kv):
Y
Yanzhan Yang 已提交
71 72 73 74
    if len(mobile_model_path) > 0:
        pp_green("has set mobile_model_path, stop checking model & params", 1)
        sh("cp {}/* {}".format(mobile_model_path, checked_model_path))
        return
Y
Yanzhan Yang 已提交
75 76 77 78 79
    ops = prog.current_block().ops
    vars = prog.current_block().vars
    # 强制所有var为可持久化
    p_names = []
    for name in vars:
Y
Yanzhan Yang 已提交
80
        name = str(name)
Y
Yanzhan Yang 已提交
81 82 83 84
        v = fluid.framework._get_var(name, prog)
        if not v.persistable:
            v.persistable = True
            p_names.append(name)
85
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
86 87 88
    has_found_wrong_shape = False
    # 修正每个var的形状
    for name in vars:
Y
Yanzhan Yang 已提交
89
        name = str(name)
Y
Yanzhan Yang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        v = vars[name]
        if v.persistable:
            v1 = fluid.global_scope().find_var(name)
            try:
                t1 = v1.get_tensor()
                shape = t1.shape()
            except:
                continue
            if v.desc.shape() != shape:
                has_found_wrong_shape = True
            v.desc.set_shape(shape)
    # 恢复var的可持久化属性
    for name in p_names:
        v = fluid.framework._get_var(name, prog)
        v.persistable = False
    fluid.io.save_inference_model(dirname=checked_model_path, feeded_var_names=feeds, target_vars=fetches, executor=exe, main_program=prog, model_filename="model", params_filename="params")
    if has_found_wrong_shape:
        pp_red("has found wrong shape", 1)
    else:
        pp_green("has not found wrong shape", 1)
    pp_green("new model is saved into directory 【{}】".format(checked_model_path), 1)

Z
zp7 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
# 分别加密model和params,加密key使用同一个
def encrypt_model():
    if not need_encrypt:
        return
    pp_yellow(dot + dot + " encrypting model")
    if not os.path.exists(checked_encrypt_model_path):
        os.mkdir(checked_encrypt_model_path)
    res = sh("model-encrypt-tool/enc_key_gen -l 20 -c 232")
    lines = res.split("\n")

    for line in lines:
        if line.startswith("key:"):
            line = line.replace('key:','')
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/model -o "
               "checked_model/model.ml".format(line))
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/params  -o checked_model/params.ml".format(line))
            pp_green("model has been encrypted, key is : {}".format(line), 1)
            sh("mv {} {}".format(checked_model_path + "/*.ml", checked_encrypt_model_path))
            return
    pp_red("model encrypt error", 1)

Y
Yanzhan Yang 已提交
133 134 135 136
# 生成feed的key-value对
def gen_feed_kv():
    feed_kv = {}
    for feed_name in feeds:
137
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        data = np.random.random(feed_shape).astype("float32")
        feed_kv[feed_name] = data
    return feed_kv

# 保存feed的key-value对
def save_feed_kv(feed_kv):
    for feed_name in feed_kv:
        feed_data = feed_kv[feed_name]
        feed_list = feed_data.flatten().tolist()
        if not os.path.exists(feed_path):
            os.mkdir(feed_path)
        file_name = feed_name.replace("/", "_")
        out_file = open(feed_path + "/" + file_name, "w")
        for feed_item in feed_list:
            out_file.write("{}\n".format(feed_item))
        out_file.close()

last_feed_var_name = None
last_feed_file_name = None
157
last_feed_var_lod = None
Y
Yanzhan Yang 已提交
158 159
# 加载feed的key-value对
def load_feed_kv():
Y
Yanzhan Yang 已提交
160 161
    if not os.path.exists(feed_path):
        return None
Y
Yanzhan Yang 已提交
162 163
    global last_feed_var_name
    global last_feed_file_name
164
    global last_feed_var_lod
Y
Yanzhan Yang 已提交
165 166 167 168
    feed_kv = {}
    pp_yellow(dot + dot + " checking feed info")
    pp_green("feed data is saved into directory 【{}】".format(feed_path), 1)
    for feed_name in feeds:
169
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
170 171 172 173
        pp_tab("feed var name : {}; feed var shape : {}".format(feed_name, feed_shape), 1)
        file_name = feed_name.replace("/", "_")
        last_feed_var_name = feed_name
        last_feed_file_name = file_name
Y
Yanzhan Yang 已提交
174 175 176 177 178 179 180
        feed_file_path = feed_path + "/" + file_name
        if not os.path.exists(feed_file_path):
            return None
        data = np.loadtxt(feed_file_path)
        expected_len = 1
        for dim in feed_shape:
            expected_len *= dim
181
        if len(np.atleast_1d(data)) != expected_len:
Y
Yanzhan Yang 已提交
182 183
            return None
        data = data.reshape(feed_shape).astype("float32")
184 185
        
        if is_lod:
186 187 188 189
            data_shape = [1]
            for dim in feed_shape:
                data_shape.append(dim)
            data = data.reshape(data_shape).astype("float32")
190 191 192 193 194
            tensor = fluid.LoDTensor()
            seq_lens = [len(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
Y
Yanzhan Yang 已提交
195
                cur_len += l
196 197 198 199 200 201 202 203
                lod.append(cur_len)
            data = data.reshape(feed_shape)
            tensor.set(data, fluid.CPUPlace())
            tensor.set_lod([lod])
            last_feed_var_lod = lod
            feed_kv[feed_name] = tensor
        else:
            feed_kv[feed_name] = data
Y
Yanzhan Yang 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    return feed_kv

# 运行模型
def run_model(feed_kv=None):
    if feed_kv is None:
        feed_kv = gen_feed_kv()
    outputs = exe.run(prog, feed=feed_kv, fetch_list=fetches, return_numpy=False)
    results = []
    for output in outputs:
        results.append(np.array(output))
    return results

# 获取变量形状
def get_var_shape(var_name):
    vars = prog.current_block().vars
    shape = vars[var_name].desc.shape()
    for i in range(len(shape)):
        dim = shape[i]
        if dim == -1:
            shape[i] = 1
    return shape

226 227 228 229 230 231
# 获取输入变量形状
def get_feed_var_shape(var_name):
    # 如果想写死输入形状,放开以下语句
    # return [1, 3, 224, 224]
    return get_var_shape(var_name)

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
persistable_cache = []
# 所有var,全部变成持久化
def force_all_vars_to_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if not persistable:
            persistable_cache.append(var_name)
            v.persistable = True

# 恢复持久化属性
def restore_all_vars_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if var_name in persistable_cache:
            v.persistable = False
    persistable_cache = []

Y
Yanzhan Yang 已提交
255 256
# 获取var的数据
def get_var_data(var_name, feed_kv=None):
257
    output = np.array(fluid.global_scope().var(var_name).get_tensor())
Y
Yanzhan Yang 已提交
258 259 260 261
    return output

output_var_cache = {}
def tensor_sample(tensor):
262 263 264 265 266
    if is_sample_step:
        step = sample_step
    else:
        step = math.floor(len(tensor) / sample_num)
    step = max(step, 1)
267
    step = int(step)
Y
Yanzhan Yang 已提交
268
    sample = []
269
    for i in range(0, len(tensor), step):
Y
Yanzhan Yang 已提交
270 271 272
        sample.append(tensor[i])
    return sample

273
op_cache = {}
Y
Yanzhan Yang 已提交
274 275
# 获取每层输出的数据
def save_all_op_output(feed_kv=None):
276 277
    force_all_vars_to_persistable()
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
278 279 280
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    ops = prog.current_block().ops
Y
Yanzhan Yang 已提交
281 282 283
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
284
    feed_names = feeds
Y
Yanzhan Yang 已提交
285 286 287
    for i in range(len(ops)):
        op = ops[i]
        var_name = None
288 289 290 291
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in ["Y", "Out", "Output"]:
                var_name_index = index
Y
Yanzhan Yang 已提交
292
                break
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            for name in op.output_arg_names:
                var_name = name
                if "tmp" in name:
                    break
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
Y
Yanzhan Yang 已提交
308
        if fast_check:
Y
Yanzhan Yang 已提交
309
            if var_name not in fetch_names and var_name not in feed_names:
Y
Yanzhan Yang 已提交
310
                continue
Y
Yanzhan Yang 已提交
311 312 313 314 315 316 317
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
318 319 320 321 322 323
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
Y
Yanzhan Yang 已提交
324 325 326 327
            out_file.close()
        except:
            pass
    pp_green("all the op outputs are saved into directory 【{}】".format(output_path), 1)
328
    restore_all_vars_persistable()
Y
Yanzhan Yang 已提交
329 330 331 332 333 334 335 336 337 338

ops = prog.current_block().ops
vars = prog.current_block().vars

pp_yellow(dot + dot + " checking op list")
op_types = set()
for op in ops:
    op_types.add(op.type)
pp_tab("op types : {}".format(op_types), 1)

Y
Yanzhan Yang 已提交
339 340 341 342
def check_mobile_results(args, fuse, mem_opt):
    args = "{} {} {}".format("1" if fuse else "0", "1" if mem_opt else "0", args)
    res = sh("adb shell \"cd {} && export LD_LIBRARY_PATH=. && ./test-net {}\"".format(mobile_exec_root, args))
    lines = res.split("\n")
Y
Yanzhan Yang 已提交
343 344
    # for line in lines:
    #     print(line)
Y
Yanzhan Yang 已提交
345 346 347 348
    for line in lines:
        if line.startswith("auto-test-debug"):
            print(line)
    pp_yellow(dot + dot + " checking paddle mobile results for {} -- {} ".format(green("【fusion】" if fuse else "【non fusion】"), green("【memory-optimization】" if mem_opt else "【non-memory-optimization】")))
Y
Yanzhan Yang 已提交
349 350 351
    mobile_var_cache = {}
    for line in lines:
        parts = line.split(" ")
Y
Yanzhan Yang 已提交
352 353 354
        if len(parts) < 2:
            continue
        if "auto-test" != parts[0]:
Y
Yanzhan Yang 已提交
355 356 357 358 359
            continue
        if parts[1] == "load-time-cost":
            pp_green("load time cost : {}".format(parts[2]), 1) 
        elif parts[1] == "predict-time-cost":
            pp_green("predict time cost : {}".format(parts[2]), 1) 
360 361
        elif parts[1] == "preprocess-time-cost":
            pp_green("preprocess time cost : {}".format(parts[2]), 1)
Y
Yanzhan Yang 已提交
362 363 364 365 366 367 368
        elif parts[1] == "var":
            var_name = parts[2]
            values = list(map(lambda x: float(x), parts[3:]))
            mobile_var_cache[var_name] = values
    error_index = None
    error_values1 = None
    error_values2 = None
Y
Yanzhan Yang 已提交
369 370 371 372
    checked_names = []
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
373 374
    for index in op_cache:
        op_output_var_name, op = op_cache[index]
Y
Yanzhan Yang 已提交
375 376 377 378 379 380 381 382
        if mem_opt:
            found_in_fetch = False
            for fetch in fetches:
                if op_output_var_name == fetch.name:
                    found_in_fetch = True
                    break
            if not found_in_fetch:
                continue
Y
Yanzhan Yang 已提交
383 384 385 386 387 388 389 390 391 392 393 394
        if not op_output_var_name in output_var_cache:
            continue
        if not op_output_var_name in mobile_var_cache:
            continue
        values1 = output_var_cache[op_output_var_name]
        values2 = mobile_var_cache[op_output_var_name]
        if len(values1) != len(values2):
            error_index = index
        if error_index == None:
            for i in range(len(values1)):
                v1 = values1[i]
                v2 = values2[i]
Y
Yanzhan Yang 已提交
395
                if abs(v1 - v2) > diff_threshold:
Y
Yanzhan Yang 已提交
396 397
                    error_index = index
                    break
Y
Yanzhan Yang 已提交
398
        checked_names.append(op_output_var_name)
Y
Yanzhan Yang 已提交
399 400 401 402
        if error_index != None:
            error_values1 = values1
            error_values2 = values2
            break
Y
Yanzhan Yang 已提交
403 404 405 406 407
    if error_index == None:
        for name in fetch_names:
            if name not in checked_names:
                error_index = -1
                break
Y
Yanzhan Yang 已提交
408 409
    if error_index == None:
        pp_green("outputs are all correct", 1)
Y
Yanzhan Yang 已提交
410 411
    elif error_index == -1:
        pp_red("outputs are missing")
Y
Yanzhan Yang 已提交
412
    else:
Y
Yanzhan Yang 已提交
413 414
        error_values1 = np.array(error_values1)
        error_values2 = np.array(error_values2)
Y
Yanzhan Yang 已提交
415
        # pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
Z
zp7 已提交
416 417
        pp_red("corresponding fluid op is {}th op, op's type is {}, wrong var name is {}".format(
            error_index,op_cache[error_index][1].type,op_output_var_name), 1)
Y
Yanzhan Yang 已提交
418 419
        pp_red("fluid results are : ", 1)
        pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
Z
zp7 已提交
420
        pp_yellow("paddle mobile results are : ", 1)
Y
Yanzhan Yang 已提交
421
        pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
Y
Yanzhan Yang 已提交
422 423 424 425 426 427
    # print(output_var_cache)
    # print(mobile_var_cache)

def main():
    # 加载kv
    feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
428 429 430 431
    if feed_kv == None:
        feed_kv = gen_feed_kv()
        save_feed_kv(feed_kv)
        feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
432 433 434 435 436 437
    # 预测
    pp_yellow(dot + dot + " checking inference")
    outputs = run_model(feed_kv=feed_kv)
    pp_tab("fluid output : {}".format(outputs), 1)
    # 重新保存模型
    pp_yellow(dot + dot + " checking model correctness")
438
    resave_model(feed_kv=feed_kv)
Z
zp7 已提交
439 440
    # 输出加密模型
    encrypt_model()
Y
Yanzhan Yang 已提交
441 442 443
    # 输出所有中间结果
    pp_yellow(dot + dot + " checking output result of every op")
    save_all_op_output(feed_kv=feed_kv)
444 445 446 447 448
    pp_yellow(dot + dot + " checking fetch info")
    for fetch in fetches:
        fetch_name = fetch.name
        fetch_shape = get_var_shape(fetch_name)
        pp_tab("fetch var name : {}; fetch var shape : {}".format(fetch_name, fetch_shape), 1)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    # 输出所有op、var信息
    info_file = open("info.txt", "w")
    for i in range(len(ops)):
        op = ops[i]
        info_file.write("{}th op: type - {}\n".format(i, op.type))
        info_file.write("inputs:\n")
        for var_name in op.input_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
        info_file.write("outputs:\n")
        for var_name in op.output_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
    info_file.close()
Y
Yanzhan Yang 已提交
471 472 473 474 475 476 477 478 479
    # 开始检查mobile的正确性
    print("")
    print("==================================================")
    print("")
    pp_yellow(dot + " start inspecting paddle mobile correctness & performance")
    push(checked_model_path)
    push(feed_path + "/" + last_feed_file_name, "input.txt")
    push(mobile_src_root + "/build/release/arm-v7a/build/libpaddle-mobile.so")
    push(mobile_src_root + "/test/build/test-net")
480
    last_feed_var_shape = get_feed_var_shape(last_feed_var_name)
Y
Yanzhan Yang 已提交
481 482 483
    args = str(len(last_feed_var_shape))
    for dim in last_feed_var_shape:
        args += " " + str(dim)
484 485 486 487 488 489 490
    if is_lod:
        args += " 1"
        args += " " + str(len(last_feed_var_lod))
        for dim in last_feed_var_lod:
            args += " " + str(dim)
    else:
        args += " 0"
Y
Yanzhan Yang 已提交
491
    args += " " + str(len(output_var_cache))
492 493 494 495 496
    args += " " + str(1 if is_sample_step else 0)
    if is_sample_step:
        args += " " + str(sample_step)
    else:
        args += " " + str(sample_num)
Y
Yanzhan Yang 已提交
497 498
    for var_name in output_var_cache.keys():
        args += " " + var_name
Y
Yanzhan Yang 已提交
499 500 501
    if not fast_check:
        check_mobile_results(args, False, False)
        check_mobile_results(args, False, True)
Y
Yanzhan Yang 已提交
502 503
    check_mobile_results(args, True, False)
    check_mobile_results(args, True, True)
Y
Yanzhan Yang 已提交
504 505 506

if __name__ == "__main__":
    main()