batch_norm_compute_test.cc 8.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/batch_norm_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <typename dtype>
void batch_norm_compute_ref(const operators::BatchNormParam& param) {
  DDim x_dims = param.x->dims();
  auto x_data = param.x->mutable_data<dtype>();
  auto scale_data = param.scale->mutable_data<dtype>();
  auto bias_data = param.bias->mutable_data<dtype>();
  auto mean_data = param.mean->mutable_data<dtype>();
  auto variance_data = param.variance->mutable_data<dtype>();
  auto y_data = param.y->mutable_data<dtype>();
  float epsilon = param.epsilon;
  float momentum = param.momentum;
  DataLayoutType data_layout = param.data_layout;

  bool global_stats = param.is_test || param.use_global_stats;
  if (global_stats) {
    int64_t outer_size = 0;
    int64_t channel_size = 0;
    int64_t inner_size = 0;
    switch (data_layout) {
      case DATALAYOUT(kNCHW):
        outer_size = x_dims[0];
        channel_size = x_dims[1];
        inner_size = x_dims.Slice(2, x_dims.size()).production();
        break;
      // case DATALAYOUT(kNHWC):
      //   outer_size = x_dims.Slice(0, x_dims.size() - 1).production();
      //   channel_size = x_dims[x_dims.size() - 1];
      //   inner_size = 1;
      //   break;
      default:
        LOG(FATAL) << "Unknown storage order: " << DataLayoutToStr(data_layout);
        break;
    }
    auto x_ptr = x_data;
    auto y_ptr = y_data;
    for (int o = 0; o < outer_size; o++) {
      for (int c = 0; c < channel_size; c++) {
        for (int i = 0; i < inner_size; i++) {
          dtype norm_x =
              (*x_ptr - mean_data[c]) / std::sqrt(variance_data[c] + epsilon);
          *y_ptr = norm_x * scale_data[c] + bias_data[c];
          x_ptr++;
          y_ptr++;
        }
      }
    }
  } else {
    // TODO(hong19860320) calculate mean_out, variance_out, saved_mean and
    // saved_variance
  }
}

TEST(batch_norm_arm, retrive_op) {
  auto batch_norm =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
          "batch_norm");
  ASSERT_FALSE(batch_norm.empty());
  ASSERT_TRUE(batch_norm.front());
}

TEST(batch_norm_arm, init) {
  BatchNormCompute batch_norm;
  ASSERT_EQ(batch_norm.precision(), PRECISION(kFloat));
  ASSERT_EQ(batch_norm.target(), TARGET(kARM));
}

TEST(batch_norm_arm, compute) {
  DeviceInfo::Init();
  for (auto n : {1, 2}) {
    for (auto c : {6, 32 /*, 128*/}) {
      for (auto h : {9, 18 /*, 56 , 112, 224, 512*/}) {
        for (auto w : {9, 18 /*, 56, 112, 224, 512*/}) {
          for (auto is_test : {/*false, */ true}) {
            for (auto use_global_stats : {false, true}) {
              for (auto epsilon : {1e-4f, 1e-5f}) {
                for (auto momentum : {0.9f, 0.99f}) {
                  for (auto data_layout :
                       {DATALAYOUT(kNCHW) /*, DATALAYOUT(kNHWC)*/}) {
                    Tensor x;
                    Tensor scale;
                    Tensor bias;
                    Tensor mean;
                    Tensor variance;
                    Tensor y;
                    Tensor mean_out;
                    Tensor variance_out;
                    Tensor saved_mean;
                    Tensor saved_variance;
                    Tensor y_ref;
                    Tensor mean_out_ref;
                    Tensor variance_out_ref;
                    Tensor saved_mean_ref;
                    Tensor saved_variance_ref;
                    // set the dims of input, output, ref output tensors
                    std::vector<int64_t> in_out_shape;
                    switch (data_layout) {
                      case DATALAYOUT(kNCHW):
                        in_out_shape = {n, c, h, w};
                        break;
                      // case DATALAYOUT(kNHWC):
                      //   in_out_shape = {n, h, w, c};
                      //   break;
                      default:
                        LOG(FATAL) << "Unknown storage order: "
                                   << DataLayoutToStr(data_layout);
                        break;
                    }
                    x.Resize(in_out_shape);
                    scale.Resize({c});
                    bias.Resize({c});
                    mean.Resize({c});
                    variance.Resize({c});
                    y.Resize(in_out_shape);
                    mean_out.Resize({c});
                    variance_out.Resize({c});
                    saved_mean.Resize({c});
                    saved_variance.Resize({c});
                    y_ref.Resize(in_out_shape);
                    mean_out_ref.Resize({c});
                    variance_out_ref.Resize({c});
                    saved_mean_ref.Resize({c});
                    saved_variance_ref.Resize({c});
                    // initialize the data of input tensors
                    auto* x_data = x.mutable_data<float>();
                    auto* scale_data = scale.mutable_data<float>();
                    auto* bias_data = bias.mutable_data<float>();
                    auto* mean_data = mean.mutable_data<float>();
                    auto* variance_data = variance.mutable_data<float>();
                    auto* y_data = y.mutable_data<float>();
                    for (int i = 0; i < x.dims().production(); i++) {
                      x_data[i] = static_cast<float>(i % 64);
                    }
                    for (int i = 0; i < scale.dims().production(); i++) {
                      scale_data[i] = static_cast<float>(i) * 0.01f + 0.03f;
                    }
                    for (int i = 0; i < bias.dims().production(); i++) {
                      bias_data[i] = static_cast<float>(i) * 0.065f + 0.1f;
                    }
                    for (int i = 0; i < mean.dims().production(); i++) {
                      mean_data[i] = static_cast<float>(i) * 0.0565f;
                    }
                    for (int i = 0; i < variance.dims().production(); i++) {
                      variance_data[i] = static_cast<float>(i) * 2.08f + 1.5f;
                    }
                    // prepare kernel params and run
                    BatchNormCompute batch_norm;
                    std::unique_ptr<KernelContext> ctx(new KernelContext);
                    ctx->As<ARMContext>();
                    batch_norm.SetContext(std::move(ctx));
                    operators::BatchNormParam param;
                    param.x = &x;
                    param.scale = &scale;
                    param.bias = &bias;
                    param.mean = &mean;
                    param.variance = &variance;
                    param.is_test = is_test;
                    param.use_global_stats = use_global_stats;
                    param.epsilon = epsilon;
                    param.momentum = momentum;
                    param.data_layout = data_layout;
                    param.y = &y;
                    param.mean_out = &mean_out;
                    param.variance_out = &variance_out;
                    param.saved_mean = &saved_mean;
                    param.saved_variance = &saved_variance;
                    batch_norm.SetParam(param);
                    batch_norm.Launch();
                    // invoking ref implementation and compare results
                    param.y = &y_ref;
                    param.mean_out = &mean_out_ref;
                    param.variance_out = &variance_out_ref;
                    param.saved_mean = &saved_mean_ref;
                    param.saved_variance = &saved_variance_ref;
                    batch_norm_compute_ref<float>(param);
                    auto* y_ref_data = y_ref.mutable_data<float>();
                    for (int i = 0; i < y.dims().production(); i++) {
                      EXPECT_NEAR(y_data[i], y_ref_data[i], 1e-5);
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(batch_norm, kARM, kFloat, kNCHW, def);