subgraph_compute.cc 8.0 KB
Newer Older
H
hong19860320 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/apu/subgraph_compute.h"
#include <dlfcn.h>
#include <sys/time.h>
#include <time.h>
#include <utility>
#include "lite/backends/apu/device.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/apu/bridges/graph.h"
#include "lite/kernels/apu/bridges/paddle_use_bridges.h"
#include "lite/kernels/apu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace apu {

int SubgraphEngine::BuildDeviceProgram() {
  unsigned int version;
33
  Neuron_getVersion(&version);
H
hong19860320 已提交
34 35 36 37
  VLOG(3) << "Neuron Adapter version: " << version;

  int status = 0;
  subgraph::apu::Graph graph;
38
  int neuron_errCode = NeuronModel_create(&model_);
H
hong19860320 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  if (NEURON_NO_ERROR != neuron_errCode) {
    LOG(WARNING) << "Fail to create model";
    return subgraph::FAILED;
  }
  graph.set_model(model_);
  graph.set_input_names(input_names_);
  graph.set_output_names(output_names_);

  // Convert all of ops and their input vars and weights and added into the APU
  // NIR graph
  const auto& bridges = subgraph::Registry::Instance();
  for (auto& inst : origin_program_) {
    auto op = const_cast<OpLite*>(inst.op());
    CHECK(op);
    op->CheckShape();
    op->InferShape();
    std::string op_type = op->op_info()->Type();
    if (!bridges.Exists(op_type, TARGET(kAPU))) {
      return subgraph::FAILED;
    }

    auto kernel = inst.kernel();
    status |=
        bridges.Select(op_type, TARGET(kAPU))(reinterpret_cast<void*>(&graph),
                                              const_cast<OpLite*>(op),
                                              const_cast<KernelBase*>(kernel));
    if (subgraph::CHECK_FAILED(status)) {
      return subgraph::FAILED;
    }
  }

  // Get input tensor
  std::vector<uint32_t> ins;
  origin_itensors_.resize(input_names_.size());
  origin_idims_.resize(input_names_.size());
  for (int i = 0; i < input_names_.size(); i++) {
    origin_itensors_[i] = scope_->FindMutableTensor(input_names_[i]);
    CHECK(origin_itensors_[i]);
    origin_idims_[i] = origin_itensors_[i]->dims();
    VLOG(3) << "subgraph input name: " << i << ", " << input_names_[i] << ":"
            << origin_idims_[i].production();
    // Get input index
    int idx;
    if (graph.Has(input_names_[i])) {
      ins.push_back(graph.Get(input_names_[i])->index());
      VLOG(3) << "input idx: " << graph.Get(input_names_[i])->index();
    } else {
      LOG(WARNING) << "Fail to find input: " << input_names_[i];
      return subgraph::FAILED;
    }
  }

  // Get output tensor
  std::vector<uint32_t> outs;
  origin_otensors_.resize(output_names_.size());
  origin_odims_.resize(output_names_.size());
  for (int i = 0; i < output_names_.size(); i++) {
    origin_otensors_[i] = scope_->FindMutableTensor(output_names_[i]);
    CHECK(origin_otensors_[i]);
    origin_odims_[i] = origin_otensors_[i]->dims();
    VLOG(3) << "subgraph output name: " << i << ", " << output_names_[i] << ":"
            << origin_odims_[i].production();
    origin_otensors_[i]->mutable_data<int8_t>();
    // Get input index
    if (graph.Has(output_names_[i])) {
      outs.push_back(graph.Get(output_names_[i])->index());
      VLOG(3) << "output idx: " << graph.Get(output_names_[i])->index();
    } else {
      LOG(WARNING) << "Fail to find output: " << output_names_[i];
      return subgraph::FAILED;
    }
  }

  VLOG(3) << "ins size: " << ins.size() << " outs size:" << outs.size();
  // Set subgraph input/output
114
  NeuronModel_identifyInputsAndOutputs(
H
hong19860320 已提交
115
      model_, ins.size(), &ins[0], outs.size(), &outs[0]);
116
  neuron_errCode = NeuronModel_finish(model_);
H
hong19860320 已提交
117 118 119 120 121 122 123 124 125 126 127 128
  if (NEURON_NO_ERROR != neuron_errCode) {
    LOG(WARNING) << "Fail to create NIR model:" << neuron_errCode;
    return subgraph::FAILED;
  }
  VLOG(3) << "[APU] APU NIR model created!";

  auto GetCurrentUS = []() -> double {
    struct timeval time;
    gettimeofday(&time, NULL);
    return 1e+6 * time.tv_sec + time.tv_usec;
  };
  auto start_time = GetCurrentUS();
129
  compilation_ = lite::apu::Device::Global().Build(model_);
H
hong19860320 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  if (compilation_ == nullptr) {
    LOG(WARNING) << "[APU] Build APU DLA model failed!";
    return subgraph::FAILED;
  }
  VLOG(3) << "[APU] APU DLA model created, Build cost "
          << GetCurrentUS() - start_time << " us";

  return status;
}

int SubgraphEngine::LaunchDeviceProgram() {
  auto GetCurrentUS = []() -> double {
    struct timeval time;
    gettimeofday(&time, NULL);
    return 1e+6 * time.tv_sec + time.tv_usec;
  };

  auto start_time = GetCurrentUS();
148 149
  NeuronExecution* run = NULL;
  int neuron_errCode = NeuronExecution_create(compilation_, &run);
H
hong19860320 已提交
150 151 152 153 154 155 156
  if (NEURON_NO_ERROR != neuron_errCode) {
    LOG(WARNING) << "[APU] Build APU runtime failed!";
    return subgraph::FAILED;
  }

  // Set input buffer
  for (size_t i = 0; i < origin_itensors_.size(); i++) {
157 158
    auto origin_data = origin_itensors_[i]->mutable_data<int8_t>();
    auto converted_data = reinterpret_cast<uint8_t*>(origin_data);
H
hong19860320 已提交
159
    for (int j = 0; j < origin_itensors_[i]->data_size(); j++) {
160 161
      converted_data[j] =
          static_cast<uint8_t>(static_cast<int16_t>(origin_data[j]) + 128);
H
hong19860320 已提交
162
    }
163
    NeuronExecution_setInput(
164
        run, i, NULL, converted_data, origin_itensors_[i]->memory_size());
H
hong19860320 已提交
165 166 167 168
  }

  // Set output buffer
  for (size_t i = 0; i < origin_otensors_.size(); i++) {
169 170
    NeuronExecution_setOutput(
        run,
H
hong19860320 已提交
171 172 173 174 175 176
        i,
        NULL,
        reinterpret_cast<void*>(origin_otensors_[i]->raw_data()),
        origin_otensors_[i]->memory_size());
  }

177
  neuron_errCode = NeuronExecution_compute(run);
H
hong19860320 已提交
178 179 180 181 182 183
  if (NEURON_NO_ERROR != neuron_errCode) {
    LOG(WARNING) << "Fail to run execution!" << neuron_errCode;
    return subgraph::FAILED;
  }

  for (size_t i = 0; i < origin_otensors_.size(); i++) {
184 185
    auto converted_data = origin_otensors_[i]->mutable_data<int8_t>();
    auto origin_data = reinterpret_cast<uint8_t*>(converted_data);
H
hong19860320 已提交
186
    for (int j = 0; j < origin_otensors_[i]->data_size(); j++) {
187 188
      converted_data[j] =
          static_cast<int8_t>(static_cast<int16_t>(origin_data[j]) - 128);
H
hong19860320 已提交
189 190
    }
  }
191
  NeuronExecution_free(run);
H
hong19860320 已提交
192 193 194 195
  VLOG(3) << "[APU] Process cost " << GetCurrentUS() - start_time << " us";
  return 0;
}

196 197 198 199 200 201 202 203 204
SubgraphEngine::~SubgraphEngine() {
  if (compilation_) {
    NeuronCompilation_free(compilation_);
  }
  if (model_) {
    NeuronModel_free(model_);
  }
}

H
hong19860320 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
void SubgraphCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  engine_.reset(new SubgraphEngine(ctx_.get(),
                                   param.sub_block_idx,
                                   param.sub_block_desc,
                                   param.input_data_names,
                                   param.output_data_names,
                                   param.scope));
  CHECK(engine_);
  engine_->Build();
}

void SubgraphCompute::Run() {
  CHECK(engine_);
  engine_->Launch();
}

}  // namespace apu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(subgraph,
                     kAPU,
                     kInt8,
                     kNCHW,
                     paddle::lite::kernels::apu::SubgraphCompute,
                     def)
    .BindInput("Inputs",
               {LiteType::GetTensorTy(TARGET(kHost),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Outputs",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNCHW))})
    .Finalize();