transpose_op.cc 3.9 KB
Newer Older
P
pmshst 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

24 25 26 27 28 29 30
std::vector<int> axis_to_nhwc4d(const std::vector<int>& axis) {
  CHECK_EQ(axis.size(), 4);
  std::vector<int> new_axis(4, 0);
  const std::vector<int> axis_map1 = {0, 2, 3, 1};
  const std::vector<int> axis_map2 = {0, 3, 1, 2};
  for (size_t i = 0; i < new_axis.size(); ++i) {
    new_axis[i] = axis_map2[axis[axis_map1[i]]];
P
pmshst 已提交
31
  }
32 33 34 35 36 37 38 39 40
  return new_axis;
}

std::vector<int> axis_to_nhw3d(const std::vector<int>& axis) {
  CHECK_EQ(axis.size(), 3);
  std::vector<int> new_axis(3, 0);
  const std::vector<int> axis_map = {0, 2, 1};
  for (size_t i = 0; i < new_axis.size(); ++i) {
    new_axis[i] = axis_map[axis[axis_map[i]]];
P
pmshst 已提交
41
  }
42
  new_axis.push_back(3);
P
pmshst 已提交
43 44 45
  return new_axis;
}

46 47 48 49 50 51 52 53 54
std::vector<int64_t> infer_shape(const std::vector<int64_t>& x_dims,
                                 const std::vector<int>& axis_nhwc) {
  std::vector<int64_t> out_dims(x_dims);
  for (size_t i = 0; i < out_dims.size(); ++i) {
    out_dims[i] = x_dims[axis_nhwc[i]];
  }
  return out_dims;
}

P
pmshst 已提交
55 56 57 58 59 60 61 62 63 64 65
int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[MLU] Converting " + op_type + "...";

  // Get input vars and op attributes
  auto x_var_name = op_info->Input("X").front();
66 67
  auto x = scope->FindVar(x_var_name)->GetMutable<Tensor>();
  auto x_dims = x->dims().Vectorize();
P
pmshst 已提交
68 69 70 71 72 73

  auto out_var_name = op_info->Output("Out").front();
  auto output = scope->FindVar(out_var_name)->GetMutable<Tensor>();
  auto output_dims = output->dims().Vectorize();

  auto axis = op_info->GetAttr<std::vector<int>>("axis");
74 75 76 77

  std::vector<int> axis_nhwc;
  if (axis.size() == 4) {
    axis_nhwc = axis_to_nhwc4d(axis);
J
jackzhang235 已提交
78
  } else if (axis.size() == 3) {
79 80 81 82 83 84 85 86
    axis_nhwc = axis_to_nhw3d(axis);
  } else {
    CHECK(0) << "Unsupport dim in mlu transpose";
  }

  auto output_dims_nhwc = infer_shape(x_dims, axis_nhwc);
  output->Resize(output_dims_nhwc);

P
pmshst 已提交
87
  auto output_tensor = graph->AddNode(
88
      out_var_name, output_dims_nhwc, CNML_TENSOR, CNML_NHWC, graph->FPType());
P
pmshst 已提交
89 90 91 92 93 94 95 96

  CHECK(graph->HasNode(x_var_name));
  auto input_tensor = graph->GetNode(x_var_name);
  cnmlBaseOp_t transpose_op_{nullptr};

  cnmlNdTransposeOpParam_t transpose_param{nullptr};

  CNML_CALL(cnmlCreateNdTransposeOpParam(
97
      &transpose_param, axis_nhwc.data(), axis_nhwc.size()));
P
pmshst 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  // Use cnmlCreatexxxOpForward to create op.
  CNML_CALL(cnmlCreateNdTransposeProOp(&transpose_op_,
                                       input_tensor->mlu_tensor(),
                                       output_tensor->mlu_tensor(),
                                       transpose_param));

  graph->FuseOp(transpose_op_);
  return SUCCESS;
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(transpose,
                         kMLU,
                         paddle::lite::subgraph::mlu::TransposeConverter);

REGISTER_SUBGRAPH_BRIDGE(transpose2,
                         kMLU,
                         paddle::lite::subgraph::mlu::TransposeConverter);