conv_func.h 5.6 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
backup  
hjchen2 已提交
17
#include <vector>
L
liuruilong 已提交
18
#ifdef __ARM_NEON
L
liuruilong 已提交
19 20 21 22
#include <arm_neon.h>
#endif
#include "framework/ddim.h"
#include "framework/tensor.h"
H
backup  
hjchen2 已提交
23
#include "operators/math/activation.h"
L
liuruilong 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle_mobile {
namespace operators {
namespace math {

using framework::DDim;
using framework::Tensor;

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  return output_size;
}

H
backup  
hjchen2 已提交
39 40
inline void expand_bias(Tensor &bias, int axis, const DDim &dDim) {  // NOLINT
  const auto bias_ptr = bias.data<float>();
L
liuruilong 已提交
41 42 43 44 45
  const DDim bias_ddim = bias.dims();
  PADDLE_MOBILE_ENFORCE(bias.dims().size() == 1,
                        "the bias tensor's dims size != 1")
  DDim outer_ddim = paddle_mobile::framework::slice_ddim(dDim, 0, axis + 1);
  DDim inner_ddim =
L
liuruilong 已提交
46
      paddle_mobile::framework::slice_ddim(dDim, axis + 1, dDim.size());
L
liuruilong 已提交
47 48 49 50 51 52
  int outer_size = paddle_mobile::framework::product(outer_ddim);
  int inner_size = paddle_mobile::framework::product(inner_ddim);
  bias.Resize(dDim);
  auto new_ptr = bias.mutable_data<float>();
  int axis_size = dDim[axis];

L
liuruilong 已提交
53
#ifdef __ARM_NEON
L
liuruilong 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  for (int i = 0; i < outer_size; ++i) {
    int inner_num = inner_size >> 4;
    int remain = inner_size - (inner_num << 4);
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (; inner_num > 0; inner_num--) {
      float32x4_t v_newptr1 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr2 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr3 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr4 = vdupq_n_f32(v_bias);
      vst1q_f32(new_ptr, v_newptr1);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr2);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr3);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr4);
      new_ptr += 4;
    }
    for (; remain > 0; remain--) {
      *new_ptr = v_bias;
      new_ptr++;
    }
  }
#else
  for (int i = 0; i < outer_size; ++i) {
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (int j = 0; j < inner_size; ++j) {
      new_ptr[i * inner_size + j] = v_bias;
    }
  }
#endif
}

inline bool IsExpand(const std::vector<int64_t> &filter_dim,
                     const std::vector<int> &strides,
                     const std::vector<int> &paddings,
                     const std::vector<int> &dilations) {
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }

  return !(filter_1 && strides_1 && padding_0 && dilation_1);
}

H
backup  
hjchen2 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
template <ActivationType Act>
void ScaleAddChannelWise(const framework::Tensor *input,
                         const framework::Tensor *scale,
                         const framework::Tensor *bias,
                         framework::Tensor *output) {
  const float *input_ptr = input->data<float>();
  const float *scale_ptr = scale->data<float>();
  const float *bias_ptr = bias->data<float>();
  float *output_ptr = output->mutable_data<float>();
  // maybe check shape
  int batch_size = input->dims()[0];
  int channels = input->dims()[1];
  size_t spatial_size = input->dims()[2] * input->dims()[3];

  for (int batch = 0; batch < batch_size; ++batch) {
    for (int channel = 0; channel < channels; ++channel) {
      size_t offset = (batch * channels + channel) * spatial_size;
      const float *x = input_ptr + offset;
      float *y = output_ptr + offset;
      float alpha = scale_ptr[channel];
      float beta = bias_ptr[channel];
      int j = 0;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
      float32x4_t __scale = vdupq_n_f32(alpha);
      float32x4_t __bias = vdupq_n_f32(beta);
      for (; j < spatial_size - 15; j += 16, x += 16, y += 16) {
        float32x4_t in0 = vld1q_f32(x);
        float32x4_t in1 = vld1q_f32(x + 4);
        float32x4_t in2 = vld1q_f32(x + 8);
        float32x4_t in3 = vld1q_f32(x + 12);
        in0 = vmlaq_f32(__bias, __scale, in0);
        in1 = vmlaq_f32(__bias, __scale, in1);
        in2 = vmlaq_f32(__bias, __scale, in2);
        in3 = vmlaq_f32(__bias, __scale, in3);
        in0 = math::vActiveq_f32<Act>(in0);
        in1 = math::vActiveq_f32<Act>(in1);
        in2 = math::vActiveq_f32<Act>(in2);
        in3 = math::vActiveq_f32<Act>(in3);
        vst1q_f32(y, in0);
        vst1q_f32(y + 4, in1);
        vst1q_f32(y + 8, in2);
        vst1q_f32(y + 12, in3);
      }
      for (; j < spatial_size - 3; j += 4, x += 4, y += 4) {
        float32x4_t in0 = vld1q_f32(x);
        in0 = vmlaq_f32(__bias, __scale, in0);
        in0 = math::vActiveq_f32<Act>(in0);
        vst1q_f32(y, in0);
      }
#endif
      for (; j < spatial_size; ++j, ++x, ++y) {
        *y = math::Active<Act>(alpha * (*x) + beta);
      }
    }
  }
}

L
liuruilong 已提交
159 160 161
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile