executor.cpp 13.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
D
dolphin8 已提交
29
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
30 31 32 33
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
34

H
hanbuhe 已提交
35 36 37 38
#ifdef PADDLE_MOBILE_FPGA
#include "fpga/fpga_quantilization.h"
#endif

W
wangliu 已提交
39 40 41
namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
42 43
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
44 45
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
46
  fseek(file, 0, SEEK_END);
47
  int64_t size = ftell(file);
L
liuruilong 已提交
48 49 50 51
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
52 53
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
54 55
  fclose(file);
  return data;
W
wangliu 已提交
56 57 58 59
}

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
60 61
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
62
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
63 64 65 66 67 68 69 70 71
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
72 73 74
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
W
wangliu 已提交
75 76 77 78 79
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
80
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
81 82 83 84 85
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
86 87 88
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
89 90
    }
  }
W
wangliu 已提交
91
  if (program_.combined) {
L
liuruilong 已提交
92 93 94 95
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
96 97

  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
98
      to_predict_program_->Block(0);
L
liuruilong 已提交
99
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
100
  for (const auto &op : ops) {
L
liuruilong 已提交
101 102
    op->Init();
  }
H
hanbuhe 已提交
103 104 105 106 107
#ifdef PADDLE_MOBILE_FPGA
  for (const auto &op : ops) {
    quantilize_op(op, program_.scope);
  }
#endif
W
wangliu 已提交
108 109 110 111
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
112
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
113
  // 1. version
114 115 116
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
117 118

  // 2 Lod information
L
liuruilong 已提交
119
  uint64_t *lod_level_ptr = new uint64_t();
120
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
121 122
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
123
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
124

W
wangliu 已提交
125 126 127
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
128 129
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
L
liuruilong 已提交
130
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
131
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
132 133

    for (int k = 0; k < tmp.size(); ++k) {
134 135
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
136 137
    }

W
wangliu 已提交
138 139 140 141 142 143 144
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
145 146
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
147 148

  // 4. tensor desc
149 150
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
151

W
wangliu 已提交
152
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
153
  for (int m = 0; m < size; ++m) {
154
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
155
  }
156
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
157 158 159 160 161 162 163 164 165

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

166
  void *memory = nullptr;
W
wangliu 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }
W
wangliu 已提交
191 192 193 194 195 196 197 198
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
H
hanbuhe 已提交
199
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
W
wangliu 已提交
200 201 202 203 204 205 206 207 208
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size * type_size; ++n) {
      static_cast<char *>(memory)[n] = (*data)[n];
    }
    (*data) += (sizeof(char) * memory_size * type_size);
L
liuruilong 已提交
209
  }
W
wangliu 已提交
210 211 212 213 214 215 216 217 218 219 220 221
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
222

L
liuruilong 已提交
223 224
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
225
        char *data = origin_data;
226
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
227
        delete origin_data;
W
wangliu 已提交
228 229 230 231 232 233 234 235 236 237 238
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
239
template <typename Dtype, Precision P>
L
liuruilong 已提交
240
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
241
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
242
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
243
  char *data = origin_data;
L
liuruilong 已提交
244 245 246 247 248 249 250 251
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
252
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
253 254 255 256 257 258 259 260 261
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
262
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
263 264
}

W
wangliu 已提交
265
template <typename Dtype, Precision P>
W
wangliu 已提交
266 267
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
268 269 270 271 272 273
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
274
      to_predict_program_->Block(0);
D
dolphin8 已提交
275
  auto &ops = ops_of_block_[*to_predict_block.get()];
D
dolphin8 已提交
276
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
277
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
278
#endif
D
dolphin8 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
318
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
319 320 321 322
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
323
#endif
D
dolphin8 已提交
324
        ops[opi]->Run();
D
dolphin8 已提交
325
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
326 327
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
328
#endif
D
dolphin8 已提交
329 330 331
        finishF(opi);
      });
    }
W
wangliu 已提交
332
  }
D
dolphin8 已提交
333 334
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
335
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
336 337 338 339
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
340 341

    // to Run
D
dolphin8 已提交
342 343 344 345 346
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
347 348
  }
#endif
W
wangliu 已提交
349
  auto last_op = ops.rbegin();
D
dolphin8 已提交
350

W
wangliu 已提交
351 352 353 354 355 356
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
357 358
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
359 360
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
375 376

  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
377 378 379 380 381
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
382 383 384
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
385
  }
386 387
  //  fclose(pf);

D
dolphin8 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
401 402 403
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
404 405 406 407
  }
  printf("====================[---------]======================\n");
#endif

L
liuruilong 已提交
408
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
409 410 411 412 413
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
414 415 416
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
417
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
418 419
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
420 421 422 423 424 425 426 427
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
428 429 430
}

template class Executor<CPU, Precision::FP32>;
H
hanbuhe 已提交
431
template class Executor<GPU_MALI, Precision::FP32>;
L
liuruilong 已提交
432
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
433 434

}  // namespace paddle_mobile