paddle_api_test.cc 4.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_api.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/utils/cp_logging.h"
22
#include "lite/utils/io.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
DEFINE_string(model_dir, "", "");

namespace paddle {
namespace lite_api {

TEST(CxxApi, run) {
  lite_api::CxxConfig config;
  config.set_model_dir(FLAGS_model_dir);
  config.set_valid_places({
      Place{TARGET(kX86), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

  auto predictor = lite_api::CreatePaddlePredictor(config);

38 39
  LOG(INFO) << "Version: " << predictor->GetVersion();

S
sangoly 已提交
40
  auto inputs = predictor->GetInputNames();
41 42 43 44
  LOG(INFO) << "input size: " << inputs.size();
  for (int i = 0; i < inputs.size(); i++) {
    LOG(INFO) << "inputnames: " << inputs[i];
  }
S
sangoly 已提交
45
  auto outputs = predictor->GetOutputNames();
46 47 48 49
  for (int i = 0; i < outputs.size(); i++) {
    LOG(INFO) << "outputnames: " << outputs[i];
  }
  auto input_tensor = predictor->GetInputByName(inputs[0]);
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

58
  auto output = predictor->GetTensor(outputs[0]);
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);

  predictor->SaveOptimizedModel(FLAGS_model_dir + ".opt2");
67 68
  predictor->SaveOptimizedModel(
      FLAGS_model_dir + ".opt2.naive", LiteModelType::kNaiveBuffer, true);
Y
Yan Chunwei 已提交
69 70
}

71
// Demo1 for Mobile Devices :Load model from file and run
Y
Yan Chunwei 已提交
72 73 74
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(LightApi, run) {
  lite_api::MobileConfig config;
75
  config.set_model_from_file(FLAGS_model_dir + ".opt2.naive.nb");
Y
Yan Chunwei 已提交
76 77 78

  auto predictor = lite_api::CreatePaddlePredictor(config);

S
sangoly 已提交
79
  auto inputs = predictor->GetInputNames();
80 81
  LOG(INFO) << "input size: " << inputs.size();
  for (int i = 0; i < inputs.size(); i++) {
82
    LOG(INFO) << "inputnames: " << inputs.at(i);
83
  }
S
sangoly 已提交
84
  auto outputs = predictor->GetOutputNames();
85
  for (int i = 0; i < outputs.size(); i++) {
86
    LOG(INFO) << "outputnames: " << outputs.at(i);
87 88
  }

89 90
  LOG(INFO) << "Version: " << predictor->GetVersion();

Y
Yan Chunwei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  auto input_tensor = predictor->GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

  auto output = predictor->GetOutput(0);
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);
}
108 109 110 111

// Demo2 for Loading model from memory
TEST(MobileConfig, LoadfromMemory) {
  // Get naive buffer
112 113
  auto model_file = std::string(FLAGS_model_dir) + ".opt2.naive.nb";
  std::string model_buffer = lite::ReadFile(model_file);
114 115
  // set model buffer and run model
  lite_api::MobileConfig config;
116
  config.set_model_from_buffer(model_buffer);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

  auto predictor = lite_api::CreatePaddlePredictor(config);
  auto input_tensor = predictor->GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

  const auto output = predictor->GetOutput(0);
  const float* raw_output = output->data<float>();

  for (int i = 0; i < 10; i++) {
    LOG(INFO) << "out " << raw_output[i];
  }
}

Y
Yan Chunwei 已提交
136 137 138 139
#endif

}  // namespace lite_api
}  // namespace paddle