test_sequence_softmax_op.cpp 3.2 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <limits>
#include "../test_include.h"
#include "operators/sequence_ops/sequence_softmax_op.h"

namespace paddle_mobile {

void SequenceSoftmax(const framework::LoDTensor *X, framework::LoDTensor *Y) {
  const float *x = X->data<float>();
  const auto &lod = X->lod().back();
  float *y = Y->mutable_data<float>();
  for (int batch = 0; batch < lod.size() - 1; ++batch) {
    int num_classes = lod[batch + 1] - lod[batch];
    size_t offset = lod[batch];
    const float *input = x + offset;
    float *output = y + offset;
    float max = -std::numeric_limits<float>::max();
    for (int j = 0; j < num_classes; ++j) {
      max = (input[j] > max) ? input[j] : max;
    }
    float sum = 0.f;
    for (int j = 0; j < num_classes; ++j) {
37
      float tmp = expf(input[j] - max);
H
hjchen2 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
      sum += tmp;
      output[j] = tmp;
    }
    for (int j = 0; j < num_classes; ++j) {
      output[j] /= sum;
    }
  }
  Y->set_lod(X->lod());
}

int TestSequenceSoftmaxOp(const std::vector<int> &input_shape,
                          const std::vector<size_t> &input_lod) {
  framework::DDim dims = framework::make_ddim(input_shape);
  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["X"] = std::vector<std::string>({"input"});
  outputs["Out"] = std::vector<std::string>({"output"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<float>(input, dims, -100.0, 100.0);
  input->set_lod({input_lod});

  auto output_var = scope.get()->Var("output");

  framework::AttributeMap attrs;
  auto *op = new operators::SequenceSoftmaxOp<CPU, float>(
      "sequence_softmax", inputs, outputs, attrs, scope);

  op->InferShape();
  op->Init();
  op->Run();

  auto output = output_var->template Get<framework::LoDTensor>();

  framework::LoDTensor output_cmp;
  float *output_cmp_data = output_cmp.mutable_data<float>(output->dims());
  SequenceSoftmax(input, &output_cmp);

  const float *output_data = output->data<float>();
  for (int i = 0; i < output->numel(); ++i) {
    float gap = output_data[i] - output_cmp_data[i];
    if (std::abs(gap / (output_data[i] + 1e-5)) > 1e-3) {
      LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
                     << ", output_cmp_data[" << i
                     << "] = " << output_cmp_data[i];
      delete op;
      exit(1);
    }
  }
  delete op;
  return 0;
}

}  // namespace paddle_mobile

int main(int argc, char *argv[]) {
  TestSequenceSoftmaxOp({2, 1}, {0, 2});
  TestSequenceSoftmaxOp({100, 1}, {0, 3, 100});
  TestSequenceSoftmaxOp({100, 1}, {0, 50, 100});
  return 0;
}