conv2d_1x1_compute_test.cc 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/target_wrapper.h"

#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

template <typename Dtype1, typename Dtype2>
static void conv_basic(const Dtype1* din,
                       Dtype2* dout,
                       int num,
                       int chout,
                       int hout,
                       int wout,
                       int chin,
                       int hin,
                       int win,
                       const Dtype1* weights,
                       const Dtype2* bias,
                       int group,
                       int kernel_w,
                       int kernel_h,
                       int stride_w,
                       int stride_h,
                       int dila_w,
                       int dila_h,
                       int pad_w,
                       int pad_h,
                       bool flag_bias,
                       bool flag_relu) {
  Dtype2 beta = 0;
  auto src_data = din;
  auto dst_data_ref = dout;
  auto weights_data = weights;
  auto with_bias = flag_bias;
  auto bias_data = bias;

  int in_num = num;
  int out_channels = chout;
  int out_h = hout;
  int out_w = wout;

  int in_channel = chin;
  int in_h = hin;
  int in_w = win;
  int out_c_group = out_channels / group;
  int in_c_group = in_channel / group;

  for (int n = 0; n < in_num; ++n) {
    for (int g = 0; g < group; ++g) {
      for (int oc = 0; oc < out_c_group; ++oc) {
        for (int oh = 0; oh < out_h; ++oh) {
          for (int ow = 0; ow < out_w; ++ow) {
            int out_idx = n * group * out_c_group * out_h * out_w +
                          g * out_c_group * out_h * out_w + oc * out_h * out_w +
                          oh * out_w + ow;
            Dtype2 bias_d =
                with_bias ? (bias_data[g * out_c_group + oc]) : (Dtype2)0;
            dst_data_ref[out_idx] = bias_d;  // + dst_data_ref[out_idx] * beta;
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
                  int iw = ow * stride_w - pad_w + kw * (dila_w);
                  int ih = oh * stride_h - pad_h + kh * (dila_h);
                  if (iw < 0 || iw >= in_w) continue;
                  if (ih < 0 || ih >= in_h) continue;

                  int iidx = n * in_channel * in_h * in_w +
                             g * in_c_group * in_h * in_w + ic * in_h * in_w +
                             ih * in_w + iw;
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

                  dst_data_ref[out_idx] += src_data[iidx] * weights_data[widx];
                }
              }
            }
            if (flag_relu) {
              dst_data_ref[out_idx] = dst_data_ref[out_idx] > (Dtype2)0
                                          ? dst_data_ref[out_idx]
                                          : (Dtype2)0;
            }
          }
        }
      }
    }
  }
}

TEST(conv2d_1x1, compute) {
  // conv infos
  const int ksize = 1;
  const int stride = 1;
  const int pad = 0;
  const int group = 1;
  const int dilation = 0;
  //  int loop_cnt = 0;

  const bool bias_flag = true;
  const bool relu_flag = true;
  const int batch_size = 8;
  const int oc = 64;
  const int ih = 28;
  const int iw = 28;
  const int ic = 63;

  const int oh = ih;
  const int ow = iw;

  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create(
      "conv2d_1x1", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNHWC));
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());
  LOG(INFO) << "created conv2d_1x1 kernel";

  LOG(INFO) << "prepare kernel ------";

  lite::Tensor input, filter, bias, output;
  operators::ConvParam param;
  param.x = &input;
  param.filter = &filter;
  param.output = &output;
  if (bias_flag) {
    param.bias = &bias;
  }
  param.fuse_relu = relu_flag;

  std::vector<int> paddings = {pad, pad, pad, pad};
  std::vector<int> dilations = {dilation, dilation};

  param.paddings = std::make_shared<std::vector<int>>(paddings);
  param.dilations = std::make_shared<std::vector<int>>(dilations);
  param.strides = std::vector<int>{stride, stride};

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  std::unique_ptr<KernelContext> conv_1x1_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(conv_1x1_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(conv_1x1_context));

  const DDim& input_dim =
      lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};

  const DDim& filter_dim =
      lite::DDim{std::vector<int64_t>({oc, ic, ksize, ksize})};
  const DDim& out_dim =
      lite::DDim{std::vector<int64_t>({batch_size, oc, ih, iw})};
  // element wise bias
  const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};

  param.x->Resize(input_dim);
  param.filter->Resize(filter_dim);
  param.output->Resize(out_dim);
  if (bias_flag) {
    param.bias->Resize(bias_dim);
  }

  kernel->SetParam(param);

  size_t input_image_width = iw * ((ic + 3) / 4);
  size_t input_image_height = ih * batch_size;

  size_t out_image_width = ow * ((oc + 3) / 4);
  size_t out_image_height = oh * batch_size;

  size_t bias_image_width = ow * ((oc + 3) / 4);
  size_t bias_image_height = oh * batch_size;

  size_t filter_image_width = ksize * ((oc + 3) / 4);
  size_t filter_image_height = ic * ksize;

  auto* input_data = input.mutable_data<float, cl::Image2D>(input_image_width,
                                                            input_image_height);
  auto* filter_data = filter.mutable_data<float, cl::Image2D>(
      filter_image_width, filter_image_height);
  bias.mutable_data<float, cl::Image2D>(bias_image_width, bias_image_height);
  auto* bias_data = bias.mutable_data<float, cl::Image2D>(bias_image_width,
                                                          bias_image_height);

  const size_t cl_image2d_row_pitch{0};
  const size_t cl_image2d_slice_pitch{0};

  LOG(INFO) << "map input ...";
  auto* mapped_input =
      static_cast<float*>(TargetWrapperCL::MapImage(input_data,
                                                    input_image_width,
                                                    input_image_height,
                                                    cl_image2d_row_pitch,
                                                    cl_image2d_slice_pitch));

  LOG(INFO) << "map filter ...";
  auto* mapped_filter =
      static_cast<float*>(TargetWrapperCL::MapImage(filter_data,
                                                    filter_image_width,
                                                    filter_image_height,
                                                    cl_image2d_row_pitch,
                                                    cl_image2d_slice_pitch));

  std::default_random_engine engine;
  std::uniform_real_distribution<float> gen(-5, 5);
  std::vector<float> input_v(batch_size * ic * ih * iw);
  std::vector<float> filter_v(oc * ic * ksize * ksize);
  std::vector<float> output_v(batch_size * oc * ih * iw);
  std::vector<float> bias_v(oc);

  float* input_v_data = &input_v[0];
  float* filter_v_data = &filter_v[0];
  float* output_v_data = &output_v[0];
  float* bias_v_data = &bias_v[0];

  LOG(INFO) << "gen input and filter ...";

  for (auto& i : input_v) {
    i = gen(engine);
  }
  for (auto& f : filter_v) {
    f = gen(engine);
  }

  LOG(INFO) << "after gen input and filter ...";
  LOG(INFO) << "input_v.size(): " << input_v.size();
  LOG(INFO) << "filter_v.size(): " << filter_v.size();
  LOG(INFO) << "output_v.size(): " << output_v.size();
  LOG(INFO) << "bias_v.size(): " << bias_v.size();
  LOG(INFO) << "input_dim.production(): " << input_dim.production();
  LOG(INFO) << "filter_dim.production(): " << filter_dim.production();
  LOG(INFO) << "out_dim.production(): " << out_dim.production();
  LOG(INFO) << "bias_dim.production(): " << bias_dim.production();
  LOG(INFO) << "4 * input_image_height * input_image_width: "
            << 4 * input_image_height * input_image_width;
  LOG(INFO) << "4 * filter_image_width * filter_image_height: "
            << 4 * filter_image_width * filter_image_height;

  CHECK(input_dim.production() == input_v.size());
  CHECK_LE(input_dim.production(), 4 * input_image_height * input_image_width);
  CHECK(filter_dim.production() == filter_v.size());
  CHECK_LE(filter_dim.production(),
           4 * filter_image_width * filter_image_height);

  paddle::lite::CLImageConverterDefault default_convertor;
  LOG(INFO) << "set mapped input  ...";
  default_convertor.NCHWToImage(input_v_data, mapped_input, input_dim);
  LOG(INFO) << "set mapped filter  ...";
  paddle::lite::CLImageConverterNWBlock nw_convertor;
  nw_convertor.NCHWToImage(filter_v_data, mapped_filter, filter_dim);

  LOG(INFO) << "resize output  ...";
  output.Resize(out_dim);

  // cpu conv basic calc
  lite::Tensor out_ref;
  out_ref.Resize(out_dim);

  float* mapped_bias = nullptr;
  if (bias_flag) {
    mapped_bias =
        static_cast<float*>(TargetWrapperCL::MapImage(bias_data,
                                                      bias_image_width,
                                                      bias_image_height,
                                                      cl_image2d_row_pitch,
                                                      cl_image2d_slice_pitch));

    for (int i = 0; i < bias_dim.production(); ++i) {
      bias_v[i] = static_cast<int>(gen(engine));
    }
    CLImageConverterFolder folder_convertor;
    folder_convertor.NCHWToImage(bias_v_data, mapped_bias, bias_dim);
  }
  LOG(INFO) << "prepare kernel ready";

  LOG(INFO) << "kernel launch ...";
  kernel->Launch();
  LOG(INFO) << "mutable output ...";
  auto* output_data = output.mutable_data<float, cl::Image2D>(out_image_width,
                                                              out_image_height);

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<float, cl::Image2D>();
  auto it = wait_list->find(out_ptr);

  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  auto* mapped_output =
      static_cast<float*>(TargetWrapperCL::MapImage(output_data,
                                                    out_image_width,
                                                    out_image_height,
                                                    cl_image2d_row_pitch,
                                                    cl_image2d_slice_pitch));
  LOG(INFO) << "mutable_data out_ref_data: ";

  // run cpu ref
  auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));

  LOG(INFO) << " conv_basic beigin ..... ";

  conv_basic<float, float>(input_v_data,
                           out_ref_data,
                           batch_size,
                           oc,
                           oh,
                           ow,
                           ic,
                           ih,
                           iw,
                           filter_v_data,
                           bias_v_data,  // mapped_bias,
                           group,
                           ksize,
                           ksize,
                           stride,
                           stride,
                           dilation,
                           dilation,
                           pad,
                           pad,
                           bias_flag,
                           relu_flag);
  LOG(INFO) << " conv_basic end ..... ";

  LOG(INFO) << " out_dim: " << out_dim;
  const DDim& out_image_dims = lite::DDim{
      std::vector<int64_t>({static_cast<int64_t>(out_image_width),
                            static_cast<int64_t>(out_image_height)})};
  default_convertor.ImageToNCHW(
      mapped_output, output_v_data, out_image_dims, out_dim);
  for (int i = 0; i < out_dim.production(); i++) {
    EXPECT_NEAR(output_v_data[i], out_ref_data[i], 1e-3);
    if (abs(output_v_data[i] - out_ref_data[i]) > 1e-3) {
      LOG(FATAL) << "error idx:" << i;
    }
  }

  TargetWrapperCL::Unmap(output_data, mapped_output);
  TargetWrapperCL::Unmap(filter_data, mapped_filter);
  TargetWrapperCL::Unmap(input_data, mapped_input);
  if (bias_flag) {
    if (mapped_bias) {
      TargetWrapperCL::Unmap(bias_data, mapped_bias);
    }
  }
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(conv2d_1x1, kOpenCL, kFloat, kNHWC, image2d);