cl_image.h 4.2 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#include <vector>

#include "CL/cl.h"
#include "framework/cl/cl_half.h"
L
liuruilong 已提交
21 22 23 24 25 26 27 28
#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace framework {

class CLImage {
 public:
L
liuruilong 已提交
29 30 31
  CLImage() = default;

  void Init(cl_context context, float *tensorInput, DDim ddim) {
32 33 34
    tensor_dims_ = ddim;
    cl_image_format cf = {.image_channel_order = CL_RGBA,
                          .image_channel_data_type = CL_HALF_FLOAT};
D
dolphin8 已提交
35
    // NCHW -> [W * (C+3)/4, H * N]
36 37 38 39 40
    DLOG << tensor_dims_;
    size_t N, C, H, W;
    if (tensor_dims_.size() == 4) {
      N = tensor_dims_[0];
      if (N < 0) {
Y
yangfei 已提交
41
        N = 1;
42 43 44 45 46 47 48 49 50
      }
      C = tensor_dims_[1];
      H = tensor_dims_[2];
      W = tensor_dims_[3];
    } else if (tensor_dims_.size() == 1) {
      N = 1;
      C = tensor_dims_[0];
      H = 1;
      W = 1;
Y
yangfei 已提交
51 52
    }

53 54
    DLOG << "-------InitMemory-------";

D
dolphin8 已提交
55 56
    size_t width = W * ((C + 3) / 4);
    size_t height = H * N;
D
dolphin8 已提交
57
    std::unique_ptr<half_t[]> imageData{};
58
    int count = 0;
D
dolphin8 已提交
59 60
    if (tensorInput != nullptr) {
      imageData.reset(new half_t[width * height * 4]);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
      float *p = tensorInput;
      size_t i0 = 0;
      for (int n = 0; n < N; n++) {
        for (int c = 0; c < C; c++) {
          size_t i1 = i0;
          for (int h = 0; h < H; h++) {
            size_t i2 = (i1 << 2) + c % 4;
            for (int w = 0; w < W; w++) {
              if (i2 >= width * height * 4) {
                printf("%d > %d ----> %d, %d, %d, %d --- %d, %d, %d\n", i2,
                       width * height * 4, n, c, h, w, i0, i1, i2);
              }
              assert(i2 < width * height * 4);

              imageData[i2] = float2half(*p);
              i2 += 4;
              p++;
              //              count++;
              //              DLOG<<count;
            }
            i1 += width;
          }
        }
        i0 += width * H;
      }
D
dolphin8 已提交
86
    }
87
    DLOG << "-------InitMemory-------";
D
dolphin8 已提交
88 89
    cl_int err;
    cl_image_ = clCreateImage2D(
90 91 92 93 94 95 96 97
        context,                                   // cl_context context
        CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,  // cl_mem_flags flags
        &cf,     // const cl_image_format *image_format
        width,   // size_t image_width
        height,  // size_t image_height
        0,       // size_t image_row_pitch
        reinterpret_cast<void *>(imageData.get()),  // void *host_ptr
        &err);
D
dolphin8 已提交
98
    if (err != CL_SUCCESS) {
99
      // TODO(HaiPeng): error handling
D
dolphin8 已提交
100
    }
L
liuruilong 已提交
101 102
  }

103
  void Init(cl_context context, DDim ddim) { Init(context, nullptr, ddim); }
L
liuruilong 已提交
104

L
liuruilong 已提交
105
  inline CLImage &Resize(const DDim &dims) {
106
    tensor_dims_ = dims;
L
liuruilong 已提交
107 108 109
    return *this;
  }

110
  const DDim &dims() const { return tensor_dims_; }
L
liuruilong 已提交
111

112 113 114
  std::vector<size_t> DefaultWorkSize() { return {}; }

  cl_mem GetCLImage() const { return cl_image_; }
L
liuruilong 已提交
115

116 117 118
  template <typename T>
  T *data() const {
    return reinterpret_cast<T *>(tensor_input_);
L
liuruilong 已提交
119 120
  }

121 122 123 124 125 126 127 128 129 130 131 132
  inline int64_t numel() const { return product(tensor_dims_); }

  int ImageWidth() const { return image_width_; }

  int ImageHeight() const { return image_height_; }

  int CBlock() const { return c_block_; }

  int WidthOfOneBlock() const { return width_of_one_block_; }

  int HeightOfOneBlock() const { return height_of_one_block_; }

L
liuruilong 已提交
133
 private:
L
liuruilong 已提交
134
  bool initialized_ = false;
L
liuruilong 已提交
135
  cl_mem cl_image_;
136 137 138 139 140 141 142
  int image_width_;
  int width_of_one_block_;
  int height_of_one_block_;
  int image_height_;
  int c_block_;
  DDim tensor_dims_;
  float *tensor_input_;
L
liuruilong 已提交
143 144 145
  cl_context context_;
};

146
// void TensorToCLImage(Tensor *tensor, CLImage *image) {
L
liuruilong 已提交
147 148 149
//
//}
//
150
// void CLImageToTensor(CLImage *image, Tensor *tensor) {
L
liuruilong 已提交
151 152
//
//}
L
liuruilong 已提交
153

154 155
}  // namespace framework
}  // namespace paddle_mobile