mlu_postprocess_pass.cc 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/mir/mlu_postprocess_pass.h"
#include <list>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "lite/core/mir/graph_visualize_pass.h"
#include "lite/core/mir/pass_registry.h"
#include "lite/operators/subgraph_op.h"

namespace paddle {
namespace lite {
namespace mir {

Node* MLUPostprocessPass::InsertCastBefore(const std::string& op_type,
                                           const std::string& cast_arg_name,
                                           SSAGraph* graph,
                                           Node* cur_node,
                                           Node* inst_node,
                                           const Type* cast_type) {
  // create the arg node
  auto* cast_arg = graph->NewArgumentNode(cast_arg_name);
  cast_arg->AsArg().type = cast_type;
  inst_node->AsStmt().op()->scope()->Var(cast_arg_name);

  // create the stmt node
  auto* cast_inst = graph->NewInstructNode();
  // create op
  auto cast_op = LiteOpRegistry::Global().Create(op_type);
  CHECK(cast_op) << "create op [" << op_type << "] failed";
  cpp::OpDesc op_desc;
  op_desc.SetType(op_type);
  if (op_type == "cast") {
    op_desc.SetAttr<int>("in_dtype", 5);   // FP32
    op_desc.SetAttr<int>("out_dtype", 4);  // FP16
    op_desc.SetInput("X", {cur_node->AsArg().name});
    op_desc.SetOutput("Out", {cast_arg_name});
  } else if (op_type == "transpose") {
    // NCHW -> NHWC
    op_desc.SetAttr<std::vector<int>>("axis", {0, 2, 3, 1});
    op_desc.SetInput("X", {cur_node->AsArg().name});
    op_desc.SetOutput("Out", {cast_arg_name});
  } else if (op_type == "io_copy") {
    op_desc.SetInput("Input", {cur_node->AsArg().name});
    op_desc.SetOutput("Out", {cast_arg_name});
  } else {
    CHECK(0) << "Unsupport cast type";
  }
  cast_op->Attach(op_desc, inst_node->AsStmt().op()->scope());
  // create kernels
  auto kernels = cast_op->CreateKernels(graph->valid_places());
  std::vector<std::unique_ptr<KernelBase>> selected_kernels;
  bool is_found = false;
  for (auto& kernel : kernels) {
    if (op_type == "cast") {
      const Type* in_arg_ty = kernel->GetInputDeclType("X");
      if (PrecisionCompatibleTo(*in_arg_ty, *cur_node->AsArg().type)) {
        is_found = true;
      }
    } else if (op_type == "transpose") {
      is_found = true;
    } else if (op_type == "io_copy") {
      const Type* in_arg_ty = kernel->GetInputDeclType("Input");
      const Type* out_arg_ty = kernel->GetOutputDeclType("Out");
      if (TargetCompatibleTo(*in_arg_ty, *cur_node->AsArg().type) &&
          TargetCompatibleTo(*out_arg_ty, *cast_type)) {
        is_found = true;
      }
    } else {
      CHECK(0) << "Unsupport cast type";
    }
    if (is_found) {
      selected_kernels.emplace_back(std::move(kernel));
      // we pick the kernel
      cast_inst->AsStmt(op_type, std::move(selected_kernels), cast_op);
      auto& stmt = cast_inst->AsStmt();
      stmt.picked_kernel().SetContext(
          ContextScheduler::Global().NewContext(stmt.picked_kernel().target()));
      break;
    }
  }
  CHECK(is_found) << "Can't find a Cast kernel for Cast op: "
                  << cur_node->AsArg().name << "->" << op_type;
  // modify links
  DirectedLink(cur_node, cast_inst);
  DirectedLink(cast_inst, cast_arg);
  return cast_arg;
}

Node* MLUPostprocessPass::InsertCastAfter(const std::string& op_type,
                                          const std::string& cast_arg_name,
                                          SSAGraph* graph,
                                          Node* cur_node,
                                          Node* inst_node,
                                          const Type* cast_type) {
  // create the arg node
  auto* cast_arg = graph->NewArgumentNode(cast_arg_name);
  cast_arg->AsArg().type = cast_type;
  auto* var = inst_node->AsStmt().op()->scope()->Var(cast_arg_name);
  // for CastAfter manully set the tensor's type
  var->GetMutable<::paddle::lite::Tensor>();

  // create the stmt node
  auto* cast_inst = graph->NewInstructNode();
  // create op
  auto cast_op = LiteOpRegistry::Global().Create(op_type);
  CHECK(cast_op) << "create op [" << op_type << "] failed";
  cpp::OpDesc op_desc;
  op_desc.SetType(op_type);
  if (op_type == "cast") {
    op_desc.SetAttr<int>("in_dtype", 4);   // FP32
    op_desc.SetAttr<int>("out_dtype", 5);  // FP16
    op_desc.SetInput("X", {cast_arg_name});
    op_desc.SetOutput("Out", {cur_node->AsArg().name});
  } else if (op_type == "transpose") {
    // NHWC -> NCHW
    op_desc.SetAttr<std::vector<int>>("axis", {0, 3, 1, 2});
    op_desc.SetInput("X", {cast_arg_name});
    op_desc.SetOutput("Out", {cur_node->AsArg().name});
  } else if (op_type == "io_copy") {
    op_desc.SetInput("Input", {cast_arg_name});
    op_desc.SetOutput("Out", {cur_node->AsArg().name});
  } else {
    CHECK(0) << "Unsupport cast type";
  }

  cast_op->Attach(op_desc, inst_node->AsStmt().op()->scope());

  // create kernels
  auto kernels = cast_op->CreateKernels(graph->valid_places());
  std::vector<std::unique_ptr<KernelBase>> selected_kernels;
  bool is_found = false;
  for (auto& kernel : kernels) {
    if (op_type == "cast") {
      const Type* in_arg_ty = kernel->GetInputDeclType("X");
      if (PrecisionCompatibleTo(*in_arg_ty, *cast_type)) {
        is_found = true;
      }
    } else if (op_type == "transpose") {
      is_found = true;
    } else if (op_type == "io_copy") {
      const Type* in_arg_ty = kernel->GetInputDeclType("Input");
      const Type* out_arg_ty = kernel->GetOutputDeclType("Out");
      if (TargetCompatibleTo(*in_arg_ty, *cast_type) &&
          TargetCompatibleTo(*out_arg_ty, *cur_node->AsArg().type)) {
        is_found = true;
      }
    } else {
      CHECK(0) << "Unsupport cast type";
    }
    if (is_found) {
      selected_kernels.emplace_back(std::move(kernel));
      // we pick the kernel
      cast_inst->AsStmt(op_type, std::move(selected_kernels), cast_op);
      auto& stmt = cast_inst->AsStmt();
      stmt.picked_kernel().SetContext(
          ContextScheduler::Global().NewContext(stmt.picked_kernel().target()));
      break;
    }
  }
  CHECK(is_found) << "Can't find a Cast kernel for Cast op: "
                  << cur_node->AsArg().name << "->" << op_type;
  // modify links
  DirectedLink(cast_arg, cast_inst);
  DirectedLink(cast_inst, cur_node);
  return cast_arg;
}

void MLUPostprocessPass::InsertBefore(SSAGraph* graph,
                                      Node* head_node,
                                      Node* inst_node,
                                      const Type* inst_type) {
  const auto* head_type = head_node->AsArg().type;

  // break original link
  RemoveDirectedLink(head_node, inst_node);

  auto* cur_node = head_node;
  const auto name_prefix =
      head_node->AsArg().name + string_format("_%p", inst_node) + "/trans_";

  // layout cast node
  if (head_type->layout() != inst_type->layout()) {
    cur_node = InsertCastBefore(
        "transpose",
        name_prefix + "transpose",
        graph,
        cur_node,
        inst_node,
        LiteType::GetTensorTy(
            head_type->target(), head_type->precision(), inst_type->layout()));
  }

  // precision cast node
  if (head_type->precision() != inst_type->precision()) {
    cur_node = InsertCastBefore(
        "cast",
        name_prefix + "cast",
        graph,
        cur_node,
        inst_node,
        LiteType::GetTensorTy(
            head_type->target(), inst_type->precision(), inst_type->layout()));
  }

  // io copy
  cur_node = InsertCastBefore(
      "io_copy",
      name_prefix + "io_copy",
      graph,
      cur_node,
      inst_node,
      LiteType::GetTensorTy(
          inst_type->target(), inst_type->precision(), inst_type->layout()));

  // connect cur_node to inst_node
  DirectedLink(cur_node, inst_node);

  // reset opdesc and update kernel information
  UpdateInputTo(inst_node->AsStmt().op()->mutable_op_info(),
                head_node->AsArg().name,
                cur_node->AsArg().name);
  // for subgraph op, modify the BlockDesc
  auto* sub_block_desc = dynamic_cast<paddle::lite::operators::SubgraphOp*>(
                             inst_node->AsStmt().op().get())
                             ->GetSubBlock();
  for (size_t i = 0; i < sub_block_desc->OpsSize(); ++i) {
    auto* sub_block_op_desc = sub_block_desc->GetOp<cpp::OpDesc>(i);
    UpdateInputTo(
        sub_block_op_desc, head_node->AsArg().name, cur_node->AsArg().name);
  }

  // recreate the op
  RecreateOp(inst_node, graph);

  graph->CheckValid();
}

void MLUPostprocessPass::GetSubgraphOpArgType(Node* inst_node,
                                              const Type** arg_type,
                                              SSAGraph* graph) {
  CHECK(inst_node->IsStmt());
  constexpr auto subgraph_target = TARGET(kMLU);
  constexpr auto subgraph_layout = DATALAYOUT(kNHWC);

  // get subgraph's valid precision
  const auto& places = graph->valid_places();
  std::set<::paddle::lite_api::PrecisionType> prec_set;
  for (const auto& place : places) {
    if (place.target == TARGET(kMLU)) {
      prec_set.insert(place.precision);
    }
  }

  // get subgraph op's type info
  size_t kernel_size = inst_node->AsStmt().kernels().size();
  CHECK_GT(kernel_size, 0);
  VLOG(4) << "subgraph kernel size: " << kernel_size;

  for (size_t i = 0; i < kernel_size; ++i) {
    auto* kernel = inst_node->AsStmt().kernels()[i].get();
    VLOG(4) << i << "th kernel: " << TargetToStr(kernel->target()) << ", "
            << PrecisionToStr(kernel->precision()) << ", "
            << DataLayoutToStr(kernel->layout());
  }

  for (size_t i = 0; i < kernel_size; ++i) {
    auto* kernel = inst_node->AsStmt().kernels()[i].get();
    CHECK(kernel->target() == subgraph_target);
    CHECK(kernel->layout() == subgraph_layout);
    if (prec_set.count(kernel->precision()) == 1) {
      const auto subgraph_precision = kernel->precision();
      CHECK(subgraph_precision == PRECISION(kFloat) ||
            subgraph_precision == PRECISION(kFP16))
          << "Mlu node has unsupport precision";
      VLOG(4) << "picked kernel precision: "
              << PrecisionToStr(subgraph_precision);
      *arg_type = LiteType::GetTensorTy(
          subgraph_target, subgraph_precision, subgraph_layout);
      break;
    }
  }
}

bool MLUPostprocessPass::NeedInsert(Node* node, const Type* inst_type) {
  CHECK(node->IsArg());

  // some op, for example batch_norm, has output nodes useless
  if (node->outlinks.size() == 0) {
    return false;
  }

  // check if node is weight or persistent
  bool is_persist = node->AsArg().is_weight || node->AsArg().is_persist;
  if (is_persist) {
    VLOG(4) << "Persistent arg name: " << node->AsArg().name
            << " is_weight: " << node->AsArg().is_weight
            << " is_persist: " << node->AsArg().is_persist;
    return false;
  }

  const auto target = node->AsArg().type->target();
  const auto precision = node->AsArg().type->precision();
  const auto layout = node->AsArg().type->layout();
  VLOG(4) << "arg name: " << node->AsArg().name
          << " type: " << TargetToStr(target) << ", "
          << PrecisionToStr(precision) << ", " << DataLayoutToStr(layout);

  // do not insert nodes if previous node is on mlu already
  if (target == inst_type->target()) {
    CHECK(layout == inst_type->layout()) << "Mlu node has wrong layout";
    return false;
  }

  return true;
}

void MLUPostprocessPass::InsertAfter(SSAGraph* graph,
                                     Node* tail_node,
                                     Node* inst_node,
                                     const Type* inst_type) {
  const auto* tail_type = tail_node->AsArg().type;

  // break original link
  RemoveDirectedLink(inst_node, tail_node);

  auto* cur_node = tail_node;
  const auto name_prefix =
      tail_node->AsArg().name + string_format("_%p", inst_node) + "/trans_";

  // layout cast node
  if (tail_type->layout() != inst_type->layout()) {
    cur_node = InsertCastAfter(
        "transpose",
        name_prefix + "transpose",
        graph,
        cur_node,
        inst_node,
        LiteType::GetTensorTy(
            tail_type->target(), tail_type->precision(), inst_type->layout()));
  }

  // precision cast node
  if (tail_type->precision() != inst_type->precision()) {
    cur_node = InsertCastAfter(
        "cast",
        name_prefix + "cast",
        graph,
        cur_node,
        inst_node,
        LiteType::GetTensorTy(
            tail_type->target(), inst_type->precision(), inst_type->layout()));
  }

  // io copy
  cur_node = InsertCastAfter(
      "io_copy",
      name_prefix + "io_copy",
      graph,
      cur_node,
      inst_node,
      LiteType::GetTensorTy(
          inst_type->target(), inst_type->precision(), inst_type->layout()));

  // connect cur_node to inst_node
  DirectedLink(inst_node, cur_node);

  // reset opdesc and update kernel information
  UpdateOutputTo(inst_node->AsStmt().op()->mutable_op_info(),
                 tail_node->AsArg().name,
                 cur_node->AsArg().name);
  // for subgraph op, modify the BlockDesc
  auto* sub_block_desc = dynamic_cast<paddle::lite::operators::SubgraphOp*>(
                             inst_node->AsStmt().op().get())
                             ->GetSubBlock();
  for (size_t i = 0; i < sub_block_desc->OpsSize(); ++i) {
    auto* sub_block_op_desc = sub_block_desc->GetOp<cpp::OpDesc>(i);
    UpdateOutputTo(
        sub_block_op_desc, tail_node->AsArg().name, cur_node->AsArg().name);
  }

  // recreate the op
  RecreateOp(inst_node, graph);

  graph->CheckValid();
}

void MLUPostprocessPass::RecreateOp(Node* inst_node, SSAGraph* graph) {
  auto original_selected_kernel =
      std::move(inst_node->AsStmt().kernels().front());
  auto updated_op_info = *inst_node->AsStmt().mutable_op_info();

  inst_node->AsStmt().ResetOp(updated_op_info, graph->valid_places());
  inst_node->AsStmt().kernels().clear();
  inst_node->AsStmt().kernels().emplace_back(
      std::move(original_selected_kernel));
  for (auto& kernel : inst_node->AsStmt().kernels()) {
    VLOG(4) << "kernel info: " << kernel->name();
    inst_node->AsStmt().op()->AttachKernel(kernel.get());
  }
}

void MLUPostprocessPass::ModifyLayout(SSAGraph* graph) {
  for (auto& node : graph->mutable_nodes()) {
    if (!node.IsStmt()) continue;
    if (node.AsStmt().op_type() == "feed") {
      for (auto& out : node.outlinks) {
        bool change = true;
        for (auto& inst : out->outlinks) {
          if (inst->AsStmt().op_type() != "subgraph") {
            change = false;
            break;
          }
        }
        if (change) {
          const auto* old_type = out->AsArg().type;
          out->AsArg().type =
              LiteType::GetTensorTy(old_type->target(),
                                    old_type->precision(),
                                    ::paddle::lite_api::DataLayoutType::kNHWC,
                                    old_type->device());
        }
      }
    }
    if (node.AsStmt().op_type() == "fetch") {
      for (auto& inp : node.inlinks) {
        bool change = true;
        for (auto& inst : inp->inlinks) {
          if (inst->AsStmt().op_type() != "subgraph") {
            change = false;
            break;
          }
        }
        if (change) {
          const auto* old_type = inp->AsArg().type;
          inp->AsArg().type =
              LiteType::GetTensorTy(old_type->target(),
                                    old_type->precision(),
                                    ::paddle::lite_api::DataLayoutType::kNHWC,
                                    old_type->device());
        }
      }
    }
  }
}

void MLUPostprocessPass::Apply(const std::unique_ptr<SSAGraph>& graph) {
  // currently for non-persistent input and output args, mlu subgraph op
  // only support float16/float32 data type

  // in two situations as folllows:
  // 1: feed->arg_in->subgraph->... 2: ...->subgraph->arg_out->fetch;
  // arg_in and arg_out are assumed to be NHWC which user should be aware of.
  // Thus here we change these args' layout to NHWC
  ModifyLayout(graph.get());

  // insert io_copy, layout and precision cast of subgraph's inputs and outputs
  for (auto& node : graph->mutable_nodes()) {
    if (node.IsStmt() && node.AsStmt().op_type() == "subgraph") {
      const Type* subgraph_arg_type = nullptr;
      GetSubgraphOpArgType(&node, &subgraph_arg_type, graph.get());

      auto links_tmp = node.inlinks;
      for (auto p_in : links_tmp) {
        if (NeedInsert(p_in, subgraph_arg_type)) {
          InsertBefore(graph.get(), p_in, &node, subgraph_arg_type);
        }
      }
      links_tmp.assign(node.outlinks.begin(), node.outlinks.end());
      for (auto p_out : links_tmp) {
        if (NeedInsert(p_out, subgraph_arg_type)) {
          InsertAfter(graph.get(), p_out, &node, subgraph_arg_type);
        }
      }
    }
  }
}

}  // namespace mir
}  // namespace lite
}  // namespace paddle

REGISTER_MIR_PASS(mlu_postprocess_pass, paddle::lite::mir::MLUPostprocessPass)
    .BindTargets({TARGET(kMLU)});