test_int8_conv_op.cpp 9.7 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_helper.h"
#include "../test_include.h"
#include "operators/conv_op.h"

namespace paddle_mobile {

// Reference convolution for checking results:
// accumulate through explicit loops over input, output, and filters.
template <typename Itype, typename Otype>
void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
            const framework::AttributeMap &attrs, framework::Tensor *output) {
  framework::AttrReader attr_reader(attrs);
  std::vector<int> paddings = attr_reader.Get<std::vector<int>>("paddings");
  std::vector<int> strides = attr_reader.Get<std::vector<int>>("strides");
  std::vector<int> dilations = attr_reader.Get<std::vector<int>>("dilations");
  int groups = attr_reader.Get<int>("groups");
  int kernel_h = filter->dims()[2];
  int kernel_w = filter->dims()[3];
  int pad_h = paddings[0];
  int pad_w = paddings[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
  auto in_shape = input->dims();
  auto out_shape = output->dims();

  const bool has_depth = 0;
  int kernel_d, pad_d, stride_d, dilation_d;
  if (has_depth) {
    kernel_d = kernel_h;
    stride_d = stride_h;
    pad_d = pad_h;
    dilation_d = dilation_h;
  } else {
    kernel_d = stride_d = dilation_d = 1;
    pad_d = 0;
  }
  // Groups
  int o_g = out_shape[1] / groups;
  int k_g = in_shape[1] / groups;
  int o_head, k_head;
  // Convolution
  vector<int> weight_offset(4 + has_depth);
  vector<int> in_offset(4 + has_depth);
  vector<int> out_offset(4 + has_depth);
  auto offset = [](const framework::Tensor *input, const vector<int> &indics) {
    framework::DDim shape = input->dims();
    size_t count = 0;
    for (int i = 0; i < indics.size(); ++i) {
      count *= shape[i];
      count += indics[i];
    }
    return count;
  };

  const Itype *in_data = input->data<Itype>();
  const Itype *w_data = filter->data<Itype>();
  Otype *out_data = output->mutable_data<Otype>();
  memset(out_data, 0, output->numel() * sizeof(Otype));
  for (int n = 0; n < out_shape[0]; n++) {
    for (int g = 0; g < groups; g++) {
      o_head = o_g * g;
      k_head = k_g * g;
      for (int o = 0; o < o_g; o++) {
        for (int k = 0; k < k_g; k++) {
          for (int z = 0; z < (has_depth ? out_shape[2] : 1); z++) {
            for (int y = 0; y < out_shape[2 + has_depth]; y++) {
              for (int x = 0; x < out_shape[3 + has_depth]; x++) {
                for (int r = 0; r < kernel_d; r++) {
                  for (int p = 0; p < kernel_h; p++) {
                    for (int q = 0; q < kernel_w; q++) {
                      int in_z = z * stride_d - pad_d + r * dilation_d;
                      int in_y = y * stride_h - pad_h + p * dilation_h;
                      int in_x = x * stride_w - pad_w + q * dilation_w;
                      if (in_z >= 0 && in_z < (has_depth ? in_shape[2] : 1) &&
                          in_y >= 0 && in_y < in_shape[2 + has_depth] &&
                          in_x >= 0 && in_x < in_shape[3 + has_depth]) {
                        weight_offset[0] = o + o_head;
                        weight_offset[1] = k;
                        if (has_depth) {
                          weight_offset[2] = r;
                        }
                        weight_offset[2 + has_depth] = p;
                        weight_offset[3 + has_depth] = q;
                        in_offset[0] = n;
                        in_offset[1] = k + k_head;
                        if (has_depth) {
                          in_offset[2] = in_z;
                        }
                        in_offset[2 + has_depth] = in_y;
                        in_offset[3 + has_depth] = in_x;
                        out_offset[0] = n;
                        out_offset[1] = o + o_head;
                        if (has_depth) {
                          out_offset[2] = z;
                        }
                        out_offset[2 + has_depth] = y;
                        out_offset[3 + has_depth] = x;

                        out_data[offset(output, out_offset)] +=
                            in_data[offset(input, in_offset)] *
                            w_data[offset(filter, weight_offset)];
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

template <typename Itype, typename Otype, int Kernel, int Pad, int Stride>
int TestConvOp() {
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  int dilation_h = 1;
  int dilation_w = 1;

H
hjchen2 已提交
142
  int batch_size = 1;
143 144 145 146
  int input_c = 63;
  int input_h = 51;
  int input_w = 51;
  int output_c = 125;
H
hjchen2 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160
  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});
  framework::DDim filter_shape =
      framework::make_ddim({output_c, input_c, kernel_h, kernel_w});

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["Input"] = std::vector<std::string>({"input"});
  inputs["Filter"] = std::vector<std::string>({"filter"});
  outputs["Output"] = std::vector<std::string>({"output"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
161
  SetupTensor<Itype>(input, input_shape, -20, 20);
H
hjchen2 已提交
162 163 164

  auto filter_var = scope.get()->Var("filter");
  auto filter = filter_var->template GetMutable<framework::LoDTensor>();
165
  SetupTensor<Itype>(filter, filter_shape, -20, 20);
H
hjchen2 已提交
166 167 168 169 170 171 172 173 174 175 176

  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["dilations"].Set<vector<int>>(
      std::vector<int>({dilation_h, dilation_w}));
  attrs["groups"].Set<int>(1);

  auto *op = new operators::ConvOp<CPU, float>("conv2d", inputs, outputs, attrs,
                                               scope);
177
  struct timespec ts_begin, ts_end;
H
hjchen2 已提交
178
  op->InferShape();
179
  // warmup
H
hjchen2 已提交
180
  op->Run();
181 182 183
  clock_gettime(CLOCK_MONOTONIC, &ts_begin);
  for (int i = 0; i < 10; ++i) {
    op->Run();
H
hjchen2 已提交
184
  }
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  clock_gettime(CLOCK_MONOTONIC, &ts_end);
  uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
                     (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
  LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";

  /*
    int kernel_extent_h = dilation_h * (kernel_h - 1) + 1;
    int kernel_extent_w = dilation_w * (kernel_w - 1) + 1;
    int output_h = (input_h + 2 * pad_h - kernel_extent_h) / stride_h + 1;
    int output_w = (input_w + 2 * pad_w - kernel_extent_w) / stride_w + 1;
    auto output_shape = framework::make_ddim(
        std::vector<int>({batch_size, output_c, output_h, output_w}));
    framework::Tensor output_cmp;
    output_cmp.mutable_data<Otype>(output_shape);
    conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);

    // compare results
    auto output = output_var->template Get<framework::LoDTensor>();
    const Otype *output_data = output->data<Otype>();
    Otype *output_cmp_data = output_cmp.data<Otype>();
    for (int i = 0; i < output->numel(); ++i) {
      PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
                            "output[%d] = %d, output_cmp[%d] = %d", i,
                            output_data[i], i, output_cmp_data[i]);
    }
  */
H
hjchen2 已提交
211 212 213 214 215 216
  delete op;
  return 0;
}

}  // namespace paddle_mobile

217
int main() {
218 219 220 221 222 223 224 225
  // kernel = 7, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=0, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 0, 2>();

  // kernel = 7, pad = 3, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=7, pad=3, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 7, 3, 2>();

226
  // kernel = 3, pad = 0, stride = 1
227
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=0, stride=1";
228
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>();
229 230 231 232 233
  // kernel = 3, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
  paddle_mobile::TestConvOp<float, float, 3, 0, 1>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

234
  // kernel = 3, pad = 1, stride = 1
235
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=3, pad=1, stride=1";
236
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 1>();
237 238 239 240 241
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
  paddle_mobile::TestConvOp<float, float, 3, 1, 1>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

242
  // kernel = 5, pad = 0, stride = 1
243
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=0, stride=1";
244
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 0, 1>();
245 246 247 248 249
  // kernel = 5, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=0, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 0, 1>();
  LOG(paddle_mobile::kLOG_INFO) << "\n";

250
  // kernel = 5, pad = 2, stride = 1
251
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=2, stride=1";
252
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 2, 1>();
253 254 255
  // kernel = 5, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=2, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 2, 1>();
256
}