softmax_kernel.cpp 4.2 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

Z
zhangyang 已提交
17 18
#include "operators/kernel/softmax_kernel.h"
#include "operators/kernel/central-arm-func/softmax_arm_func.h"
19

H
hanbuhe 已提交
20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  auto input = const_cast<LoDTensor *>(param->InputX());
  auto dims = framework::vectorize(input->dims());
  half *input_ptr;
  auto out = param->Out();
  if (input->type() == type_id<float>()) {
    out->Resize(framework::make_ddim(dims));
    out->mutable_data<float>(framework::make_ddim(dims));
  } else {
    input_ptr = input->data<half>();
  }

  auto float_input = new LoDTensor;

  PADDLE_MOBILE_ENFORCE(input->dims().size() == 4,
                        "Softmax should have 4-order input");

  auto channel = dims[3];
  if (channel == 1) {  // This input is generated by FC op, dims = [N C 1 1]
    PADDLE_MOBILE_ENFORCE(dims[2] == 1, "Softmax input must come from FC op");
    dims[3] = dims[1];
    dims[1] = 1;
  }
  input->Resize(framework::make_ddim(dims));
  float_input->Resize(framework::make_ddim(dims));

  if (channel != 2) {  // Use CPU
    out->Resize(framework::make_ddim(dims));
    out->mutable_data<float>(framework::make_ddim(dims));
    float_input->init(type_id<float>().hash_code());
    float_input->mutable_data<float>(framework::make_ddim(dims));
    //  fpga::format_fp32_ofm(float_input);
    // fpga::format_fp32_ofm(out);

    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP32;
    args.image.address = input_ptr;
    args.image.height = (uint32_t)dims[1] * dims[0];
    args.image.width = (uint32_t)dims[2];
    args.image.channels = (uint32_t)dims[3];
    args.output.address = float_input->data<float>();
    args.output.scale_address = float_input->scale;
    param->SetFloatInput(float_input);
    param->SetFpgaArgs(args);
  } else {  // Use FPGA
    fpga::format_fp16_ofm(out);
    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP16;
    args.image.address = input_ptr;
    args.image.height = (uint32_t)input->dims()[1];
    args.image.width = (uint32_t)input->dims()[2];
    args.image.channels = (uint32_t)input->dims()[3];
    args.output.address = out->data<half>();
    args.output.scale_address = out->scale;
    args.output.activation.activation_type = fpga::SOFTMAX;
    param->SetFpgaArgs(args);
  }

H
hanbuhe 已提交
88 89 90 91
  return true;
}

template <>
92
void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  auto *in_x = (param.InputX());
  if (in_x->type() == type_id<half>()) {
    fpga::PerformBypass(param.FpgaArgs());
    if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
      Tensor *out = param.Out();
      Tensor *in_x2 = param.FloatInput();

      fpga::fpga_invalidate(in_x2->data<float>(),
                            in_x2->numel() * sizeof(float));
      math::SoftmaxFuntor<CPU, float>()(in_x2, out);
      fpga::fpga_flush(out->data<float>(), out->memory_size());
    }
  } else {
    if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
      Tensor *out = param.Out();
      out->Resize(
          {in_x->dims()[0], out->dims()[1], out->dims()[2], out->dims()[3]});
      math::SoftmaxFuntor<CPU, float>()(in_x, out);
    }
  }
H
hanbuhe 已提交
113 114 115 116 117 118
}

}  // namespace operators
}  // namespace paddle_mobile

#endif