conv_transpose_kernel.cpp 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_TRANSPOSE_OP

#include "operators/kernel/conv_transpose_kernel.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvTransposeKernel<FPGA, float>::Init(ConvTransposeParam<FPGA> *param) {
  // bool relu_enabled = false;
  paddle_mobile::fpga::ActivationType activation_enable =
      paddle_mobile::fpga::NONE;
  int16_t leaky_relu_negative_slope = 0;
  auto input = const_cast<LoDTensor *>(param->Input());
  // const Tensor *bias = param->Bias();
  // auto bias_ptr = bias->data<float>();
  auto filter = const_cast<LoDTensor *>(param->Filter());
  auto out = param->Output();

  // PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
  //                      "Output channel should be equal to bias number");
  int channel = out->dims()[1];

  int sub_conv_n = param->Strides()[0];
  auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n *  // NOLINT
                                           sizeof(float));             // NOLINT

  for (int i = 0; i < channel * sub_conv_n; i++) {
    bs_ptr[i + sub_conv_n * channel] = 1;
    bs_ptr[i] = 0;  // bias_ptr[i % (channel)];
  }

  PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
                        "stride_width should be equal to stride_height ");
  PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
                        "filter width should be equal to filter height ");
  PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
                        "filter axis should be the multiple of stride axis ");
  if (param->Groups() == channel) {
    fpga::format_DWDeconv_data(filter, out, &bs_ptr, param->Groups(),
                               sub_conv_n);
    fpga::DWDeconvArgs DWDeconv_arg = {0};
    fpga::fill_DWDeconv_arg(&DWDeconv_arg, input, out, filter,
                            activation_enable, leaky_relu_negative_slope,
                            param->Strides()[0], param->Strides()[1],
                            param->Paddings()[0], param->Paddings()[1], bs_ptr);
    param->SetFpgaArgs(DWDeconv_arg);
  } else {
    fpga::format_deconv_data(filter, out, &bs_ptr, param->Groups(), sub_conv_n);
    fpga::DeconvArgs deconv_arg = {0};
    fpga::fill_deconv_arg(&deconv_arg, input, out, filter, activation_enable,
                          leaky_relu_negative_slope, param->Groups(),
                          param->Strides()[0], param->Strides()[1],
                          param->Paddings()[0], param->Paddings()[1], bs_ptr);
    param->SetFpgaArgs(deconv_arg);
  }
  return true;
}

template <>
void ConvTransposeKernel<FPGA, float>::Compute(
    const ConvTransposeParam<FPGA> &param) {
  if (param.Groups() == param.Output()->dims()[1]) {
    fpga::ComputeDWDeconv(param.FpgaDWDconvArgs());
  } else {
    fpga::ComputeFpgaDeconv(param.FpgaArgs());
  }
}

}  // namespace operators
}  // namespace paddle_mobile

#endif