activation_image_compute_test.cc 22.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
17
#include "lite/backends/opencl/target_wrapper.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
20
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25

namespace paddle {
namespace lite {

template <typename dtype>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
void relu_compute_ref(const dtype *x_data,
                      const DDim &x_dim,
                      dtype *out_data,
                      float threshold = 0.f) {
  if (abs(threshold) < 1e-5) {
    // relu
    for (int i = 0; i < x_dim.production(); ++i) {
      out_data[i] = (x_data[i] > threshold) ? x_data[i] : threshold;
    }
  } else {
    // relu6 or relu with threshold
    for (int i = 0; i < x_dim.production(); ++i) {
      auto out_tmp = (x_data[i] > 0) ? x_data[i] : 0;
      out_data[i] = (out_tmp < threshold) ? out_tmp : threshold;
    }
Y
Yan Chunwei 已提交
41 42 43
  }
}

44 45 46 47 48 49
template <typename dtype>
void sigmoid_compute_ref(const dtype *x_data,
                         const DDim &x_dim,
                         dtype *out_data) {
  for (int i = 0; i < x_dim.production(); ++i) {
    out_data[i] = 1 / (1 + expf(-x_data[i]));
Y
Yan Chunwei 已提交
50
  }
51
}
Y
Yan Chunwei 已提交
52

53 54
// #define RELU_FP16_LOOP_TEST
// #define RELU_FP16_PRINT_RESULT
55 56 57 58 59
TEST(relu_image2d_fp16, compute) {
  LOG(INFO) << "main steps of test: host -> layout(buf2img) -> relu(img) -> "
               "layout(img2buf) "
               "-> host";

60
#ifdef RELU_FP16_LOOP_TEST
61 62 63 64 65 66 67 68 69
  for (int n = 1; n <= 100; n += 33) {
    for (auto c : {1, 3}) {
      for (int h = 12; h <= 100; h += 13) {
        for (int w = 12; w <= 100; w += 25) {
#else
  const int n = 1;
  const int c = 2;
  const int h = 3;
  const int w = 4;
70
#endif  // RELU_FP16_LOOP_TEST
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

          LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c << " "
                    << h << " " << w << " ========";
          // set layout kernels
          auto buf_to_img_kernels =
              KernelRegistry::Global().Create("layout",
                                              TARGET(kOpenCL),
                                              PRECISION(kAny),
                                              DATALAYOUT(kImageDefault));
          auto img_to_buf_kernels = KernelRegistry::Global().Create(
              "layout", TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW));
          auto relu_img_kernels =
              KernelRegistry::Global().Create("relu",
                                              TARGET(kOpenCL),
                                              PRECISION(kFP16),
                                              DATALAYOUT(kImageDefault));
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(relu_img_kernels.empty());

          auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
          auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
          auto relu_img_kernel = std::move(relu_img_kernels.front());
          LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
          LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();
          LOG(INFO) << "get 3rd kernel: " << relu_img_kernel->doc();

          // set tensors about op param
          LOG(INFO) << "set tensors about op param";
          // layout(buf->img): x -> relu_in
          // relu(img): relu_in -> relu_out
          // layout(img->buf): relu_out -> y
          lite::Tensor x, y, relu_in, relu_out, y_ref;
          operators::LayoutParam BufferToImageParam;
          operators::LayoutParam ImageToBufferParam;
          BufferToImageParam.x = &x;
          BufferToImageParam.y = &relu_in;
          ImageToBufferParam.x = &relu_out;
          ImageToBufferParam.y = &y;
          operators::ActivationParam ReluParam;
          ReluParam.X = &relu_in;
          ReluParam.Out = &relu_out;

          const DDim x_dim = DDim(std::vector<DDim::value_type>{n, c, h, w});
          x.Resize(x_dim);
          y.Resize(x_dim);
          relu_in.Resize(x_dim);
          relu_out.Resize(x_dim);
          y_ref.Resize(x_dim);
          auto relu_image2d_shape =
              paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);

          // initialize tensors
          LOG(INFO) << "initialize tensors";
          auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data_ref = y_ref.mutable_data<float>(TARGET(kARM));
          auto *mapped_x = static_cast<float *>(TargetWrapperCL::Map(
              x_data, 0, sizeof(float) * x_dim.production()));
          auto *mapped_y = static_cast<float *>(TargetWrapperCL::Map(
              y_data, 0, sizeof(float) * x_dim.production()));
          for (int i = 0; i < x_dim.production(); ++i) {
            mapped_x[i] = static_cast<int>(i) - x_dim.production() / 2;
            mapped_y[i] = static_cast<int>(0);
          }
136
          auto *relu_in_data = relu_in.mutable_data<uint16_t, cl::Image2D>(
137
              relu_image2d_shape["width"], relu_image2d_shape["height"]);
138
          auto *relu_out_data = relu_out.mutable_data<uint16_t, cl::Image2D>(
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
              relu_image2d_shape["width"], relu_image2d_shape["height"]);

          // set context and kernel args
          LOG(INFO) << "set context and kernel args";
          std::unique_ptr<KernelContext> context(new KernelContext);
          context->As<OpenCLContext>().InitOnce();

          buf_to_img_kernel->SetParam(BufferToImageParam);
          std::unique_ptr<KernelContext> buf_to_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(buf_to_img_context->As<OpenCLContext>()));
          buf_to_img_kernel->SetContext(std::move(buf_to_img_context));

          img_to_buf_kernel->SetParam(ImageToBufferParam);
          std::unique_ptr<KernelContext> img_to_buf_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(img_to_buf_context->As<OpenCLContext>()));
          img_to_buf_kernel->SetContext(std::move(img_to_buf_context));

          relu_img_kernel->SetParam(ReluParam);
          std::unique_ptr<KernelContext> relu_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(relu_img_context->As<OpenCLContext>()));
          relu_img_kernel->SetContext(std::move(relu_img_context));

          // run kernels
          LOG(INFO) << "run kernel: buf_to_img_kernel";
          buf_to_img_kernel->Launch();
          LOG(INFO) << "run kernel: relu_img_kernel";
          relu_img_kernel->Launch();
          LOG(INFO) << "run kernel: img_to_buf_kernel";
          img_to_buf_kernel->Launch();

          // compute ref cpu
          relu_compute_ref<float>(mapped_x, x_dim, y_data_ref);
// result
175
#ifdef RELU_FP16_PRINT_RESULT
176 177 178 179 180
          LOG(INFO) << "---- print kernel result (input -> output) ----";
          for (int eidx = 0; eidx < x_dim.production(); ++eidx) {
            std::cout << mapped_x[eidx] << " -> " << mapped_y[eidx]
                      << std::endl;
          }
181
#endif  // RELU_FP16_PRINT_RESULT
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

          // check result: compare kernel output and cpu output(y_data_ref)
          for (int eidx = 0; eidx < x_dim.production(); eidx++) {
            EXPECT_NEAR(y_data_ref[eidx], mapped_y[eidx], 1e-6);
            if (abs(y_data_ref[eidx] - mapped_y[eidx]) > 1e-6) {
              LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx
                        << " / " << x_dim.production() << ", y_data_ref["
                        << eidx << "]:" << y_data_ref[eidx] << ", mapped_y["
                        << eidx << "]:" << mapped_y[eidx];
              break;
            }
          }

          // free
          LOG(INFO) << "free: unmap x, y";
          TargetWrapperCL::Unmap(x_data, mapped_x);
          TargetWrapperCL::Unmap(y_data, mapped_y);
199 200 201 202 203 204 205 206 207 208
#ifdef RELU_FP16_LOOP_TEST
        }  // w
      }    // h
    }      // c
  }        // n
#else
// nothing to do.
#endif
}

209 210 211
// #define RELU6_FP16_LOOP_TEST
// #define RELU6_FP16_PRINT_RESULT
TEST(relu6_image2d_fp16, compute) {
212 213 214 215
  LOG(INFO) << "main steps of test: host -> layout(buf2img) -> relu6(img) -> "
               "layout(img2buf) "
               "-> host";

216
#ifdef RELU6_FP16_LOOP_TEST
217 218 219 220 221
  for (int n = 1; n <= 100; n += 33) {
    for (auto c : {1, 3}) {
      for (int h = 12; h <= 100; h += 13) {
        for (int w = 12; w <= 100; w += 25) {
#else
222 223 224 225 226
          const int n = 1;
          const int c = 2;
          const int h = 3;
          const int w = 4;
#endif  // RELU6_FP16_LOOP_TEST
227 228 229 230 231 232 233 234 235 236 237 238 239 240

          LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c << " "
                    << h << " " << w << " ========";
          // set layout kernels
          auto buf_to_img_kernels =
              KernelRegistry::Global().Create("layout",
                                              TARGET(kOpenCL),
                                              PRECISION(kAny),
                                              DATALAYOUT(kImageDefault));
          auto img_to_buf_kernels = KernelRegistry::Global().Create(
              "layout", TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW));
          auto relu_img_kernels =
              KernelRegistry::Global().Create("relu6",
                                              TARGET(kOpenCL),
241
                                              PRECISION(kFP16),
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                                              DATALAYOUT(kImageDefault));
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(relu_img_kernels.empty());

          auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
          auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
          auto relu_img_kernel = std::move(relu_img_kernels.front());
          LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
          LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();
          LOG(INFO) << "get 3rd kernel: " << relu_img_kernel->doc();

          // set tensors about op param
          LOG(INFO) << "set tensors about op param";
          // layout(buf->img): x -> relu_in
          // relu(img): relu_in -> relu_out
          // layout(img->buf): relu_out -> y
          lite::Tensor x, y, relu_in, relu_out, y_ref;
          operators::LayoutParam BufferToImageParam;
          operators::LayoutParam ImageToBufferParam;
          BufferToImageParam.x = &x;
          BufferToImageParam.y = &relu_in;
          ImageToBufferParam.x = &relu_out;
          ImageToBufferParam.y = &y;
          operators::ActivationParam ReluParam;
          ReluParam.X = &relu_in;
          ReluParam.Out = &relu_out;
          ReluParam.Relu_clipped_coef = 6.f;

          const DDim x_dim = DDim(std::vector<DDim::value_type>{n, c, h, w});
          x.Resize(x_dim);
          y.Resize(x_dim);
          relu_in.Resize(x_dim);
          relu_out.Resize(x_dim);
          y_ref.Resize(x_dim);
          auto relu_image2d_shape =
              paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);

          // initialize tensors
          LOG(INFO) << "initialize tensors";
          auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data_ref = y_ref.mutable_data<float>(TARGET(kARM));
          auto *mapped_x = static_cast<float *>(TargetWrapperCL::Map(
              x_data, 0, sizeof(float) * x_dim.production()));
          auto *mapped_y = static_cast<float *>(TargetWrapperCL::Map(
              y_data, 0, sizeof(float) * x_dim.production()));
          for (int i = 0; i < x_dim.production(); ++i) {
            mapped_x[i] = static_cast<int>(i) - x_dim.production() / 2;
            mapped_y[i] = static_cast<int>(0);
          }
293
          auto *relu_in_data = relu_in.mutable_data<uint16_t, cl::Image2D>(
294
              relu_image2d_shape["width"], relu_image2d_shape["height"]);
295
          auto *relu_out_data = relu_out.mutable_data<uint16_t, cl::Image2D>(
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
              relu_image2d_shape["width"], relu_image2d_shape["height"]);

          // set context and kernel args
          LOG(INFO) << "set context and kernel args";
          std::unique_ptr<KernelContext> context(new KernelContext);
          context->As<OpenCLContext>().InitOnce();

          buf_to_img_kernel->SetParam(BufferToImageParam);
          std::unique_ptr<KernelContext> buf_to_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(buf_to_img_context->As<OpenCLContext>()));
          buf_to_img_kernel->SetContext(std::move(buf_to_img_context));

          img_to_buf_kernel->SetParam(ImageToBufferParam);
          std::unique_ptr<KernelContext> img_to_buf_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(img_to_buf_context->As<OpenCLContext>()));
          img_to_buf_kernel->SetContext(std::move(img_to_buf_context));

          relu_img_kernel->SetParam(ReluParam);
          std::unique_ptr<KernelContext> relu_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(relu_img_context->As<OpenCLContext>()));
          relu_img_kernel->SetContext(std::move(relu_img_context));

          // run kernels
          LOG(INFO) << "run kernel: buf_to_img_kernel";
          buf_to_img_kernel->Launch();
          LOG(INFO) << "run kernel: relu_img_kernel";
          relu_img_kernel->Launch();
          LOG(INFO) << "run kernel: img_to_buf_kernel";
          img_to_buf_kernel->Launch();

          // compute ref cpu
          relu_compute_ref<float>(mapped_x, x_dim, y_data_ref, 6.f);
// result
332
#ifdef RELU6_FP16_PRINT_RESULT
333 334 335 336 337
          LOG(INFO) << "---- print kernel result (input -> output) ----";
          for (int eidx = 0; eidx < x_dim.production(); ++eidx) {
            std::cout << mapped_x[eidx] << " -> " << mapped_y[eidx]
                      << std::endl;
          }
338
#endif  // RELU6_FP16_PRINT_RESULT
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

          // check result: compare kernel output and cpu output(y_data_ref)
          for (int eidx = 0; eidx < x_dim.production(); eidx++) {
            EXPECT_NEAR(y_data_ref[eidx], mapped_y[eidx], 1e-6);
            if (abs(y_data_ref[eidx] - mapped_y[eidx]) > 1e-6) {
              LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx
                        << " / " << x_dim.production() << ", y_data_ref["
                        << eidx << "]:" << y_data_ref[eidx] << ", mapped_y["
                        << eidx << "]:" << mapped_y[eidx];
              break;
            }
          }

          // free
          LOG(INFO) << "free: unmap x, y";
          TargetWrapperCL::Unmap(x_data, mapped_x);
          TargetWrapperCL::Unmap(y_data, mapped_y);
356
#ifdef RELU6_FP16_LOOP_TEST
357 358 359 360 361 362 363 364 365
        }  // w
      }    // h
    }      // c
  }        // n
#else
// nothing to do.
#endif
}

366 367 368 369
// #define SIGMOID_FP16_LOOP_TEST
// #define SIGMOID_FP16_PRINT_RESULT
TEST(sigmoid_image2d_fp16, compute) {
  LOG(INFO) << "main steps of test: host -> layout(buf2img) -> sigmoid(img) -> "
370 371 372
               "layout(img2buf) "
               "-> host";

373
#ifdef SIGMOID_FP16_LOOP_TEST
374 375 376 377 378
  for (int n = 1; n <= 100; n += 33) {
    for (auto c : {1, 3}) {
      for (int h = 12; h <= 100; h += 13) {
        for (int w = 12; w <= 100; w += 25) {
#else
379 380 381 382 383
          const int n = 1;
          const int c = 2;
          const int h = 3;
          const int w = 4;
#endif  // SIGMOID_FP16_LOOP_TEST
384 385 386 387 388 389 390 391 392 393 394

          LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << c << " "
                    << h << " " << w << " ========";
          // set layout kernels
          auto buf_to_img_kernels =
              KernelRegistry::Global().Create("layout",
                                              TARGET(kOpenCL),
                                              PRECISION(kAny),
                                              DATALAYOUT(kImageDefault));
          auto img_to_buf_kernels = KernelRegistry::Global().Create(
              "layout", TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW));
395 396
          auto sigmoid_img_kernels =
              KernelRegistry::Global().Create("sigmoid",
397
                                              TARGET(kOpenCL),
398
                                              PRECISION(kFP16),
399 400 401
                                              DATALAYOUT(kImageDefault));
          ASSERT_FALSE(buf_to_img_kernels.empty());
          ASSERT_FALSE(buf_to_img_kernels.empty());
402
          ASSERT_FALSE(sigmoid_img_kernels.empty());
403 404 405

          auto buf_to_img_kernel = std::move(buf_to_img_kernels.front());
          auto img_to_buf_kernel = std::move(img_to_buf_kernels.front());
406
          auto sigmoid_img_kernel = std::move(sigmoid_img_kernels.front());
407 408
          LOG(INFO) << "get 1st kernel: " << buf_to_img_kernel->doc();
          LOG(INFO) << "get 2nd kernel: " << img_to_buf_kernel->doc();
409
          LOG(INFO) << "get 3rd kernel: " << sigmoid_img_kernel->doc();
410 411 412

          // set tensors about op param
          LOG(INFO) << "set tensors about op param";
413 414 415 416
          // layout(buf->img): x -> sigmoid_in
          // sigmoid(img): sigmoid_in -> sigmoid_out
          // layout(img->buf): sigmoid_out -> y
          lite::Tensor x, y, sigmoid_in, sigmoid_out, y_ref;
417 418 419
          operators::LayoutParam BufferToImageParam;
          operators::LayoutParam ImageToBufferParam;
          BufferToImageParam.x = &x;
420 421
          BufferToImageParam.y = &sigmoid_in;
          ImageToBufferParam.x = &sigmoid_out;
422
          ImageToBufferParam.y = &y;
423 424 425
          operators::ActivationParam SigmoidParam;
          SigmoidParam.X = &sigmoid_in;
          SigmoidParam.Out = &sigmoid_out;
426 427 428 429

          const DDim x_dim = DDim(std::vector<DDim::value_type>{n, c, h, w});
          x.Resize(x_dim);
          y.Resize(x_dim);
430 431
          sigmoid_in.Resize(x_dim);
          sigmoid_out.Resize(x_dim);
432
          y_ref.Resize(x_dim);
433
          auto sigmoid_image2d_shape =
434 435 436 437 438 439 440 441 442 443 444
              paddle::lite::kernels::opencl::InitImageDimInfoWith(x_dim);

          // initialize tensors
          LOG(INFO) << "initialize tensors";
          auto *x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data = y.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
          auto *y_data_ref = y_ref.mutable_data<float>(TARGET(kARM));
          auto *mapped_x = static_cast<float *>(TargetWrapperCL::Map(
              x_data, 0, sizeof(float) * x_dim.production()));
          auto *mapped_y = static_cast<float *>(TargetWrapperCL::Map(
              y_data, 0, sizeof(float) * x_dim.production()));
445 446
          std::default_random_engine engine;
          std::uniform_real_distribution<float> dist(-1, 1);
447
          for (int i = 0; i < x_dim.production(); ++i) {
448
            mapped_x[i] = static_cast<float>(dist(engine));
449
          }
450 451 452 453 454 455 456 457
          auto *sigmoid_in_data =
              sigmoid_in.mutable_data<uint16_t, cl::Image2D>(
                  sigmoid_image2d_shape["width"],
                  sigmoid_image2d_shape["height"]);
          auto *sigmoid_out_data =
              sigmoid_out.mutable_data<uint16_t, cl::Image2D>(
                  sigmoid_image2d_shape["width"],
                  sigmoid_image2d_shape["height"]);
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

          // set context and kernel args
          LOG(INFO) << "set context and kernel args";
          std::unique_ptr<KernelContext> context(new KernelContext);
          context->As<OpenCLContext>().InitOnce();

          buf_to_img_kernel->SetParam(BufferToImageParam);
          std::unique_ptr<KernelContext> buf_to_img_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(buf_to_img_context->As<OpenCLContext>()));
          buf_to_img_kernel->SetContext(std::move(buf_to_img_context));

          img_to_buf_kernel->SetParam(ImageToBufferParam);
          std::unique_ptr<KernelContext> img_to_buf_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(img_to_buf_context->As<OpenCLContext>()));
          img_to_buf_kernel->SetContext(std::move(img_to_buf_context));

476 477
          sigmoid_img_kernel->SetParam(SigmoidParam);
          std::unique_ptr<KernelContext> sigmoid_img_context(new KernelContext);
478
          context->As<OpenCLContext>().CopySharedTo(
479 480
              &(sigmoid_img_context->As<OpenCLContext>()));
          sigmoid_img_kernel->SetContext(std::move(sigmoid_img_context));
481 482 483 484

          // run kernels
          LOG(INFO) << "run kernel: buf_to_img_kernel";
          buf_to_img_kernel->Launch();
485 486
          LOG(INFO) << "run kernel: sigmoid_img_kernel";
          sigmoid_img_kernel->Launch();
487 488 489 490
          LOG(INFO) << "run kernel: img_to_buf_kernel";
          img_to_buf_kernel->Launch();

          // compute ref cpu
491
          sigmoid_compute_ref<float>(mapped_x, x_dim, y_data_ref);
492
// result
493
#ifdef SIGMOID_FP16_PRINT_RESULT
494 495 496 497 498
          LOG(INFO) << "---- print kernel result (input -> output) ----";
          for (int eidx = 0; eidx < x_dim.production(); ++eidx) {
            std::cout << mapped_x[eidx] << " -> " << mapped_y[eidx]
                      << std::endl;
          }
499
#endif  // SIGMOID_FP16_PRINT_RESULT
500 501 502

          // check result: compare kernel output and cpu output(y_data_ref)
          for (int eidx = 0; eidx < x_dim.production(); eidx++) {
503 504
            EXPECT_NEAR(y_data_ref[eidx], mapped_y[eidx], 1e-3);
            if (abs(y_data_ref[eidx] - mapped_y[eidx]) > 1e-3) {
505 506
              LOG(INFO) << "1st diff in this case at eidx[from 0]:" << eidx
                        << " / " << x_dim.production() << ", y_data_ref["
507 508 509
                        << eidx << "]: " << y_data_ref[eidx] << ", mapped_y["
                        << eidx << "]: " << mapped_y[eidx] << ", mapped_x["
                        << eidx << "]: " << mapped_x[eidx];
510 511 512 513 514 515 516 517
              break;
            }
          }

          // free
          LOG(INFO) << "free: unmap x, y";
          TargetWrapperCL::Unmap(x_data, mapped_x);
          TargetWrapperCL::Unmap(y_data, mapped_y);
518
#ifdef SIGMOID_FP16_LOOP_TEST
519 520 521 522 523 524 525 526 527
        }  // w
      }    // h
    }      // c
  }        // n
#else
// nothing to do.
#endif
}

Y
Yan Chunwei 已提交
528 529 530
}  // namespace lite
}  // namespace paddle

531
// layout
532 533
USE_LITE_KERNEL(layout, kOpenCL, kAny, kImageDefault, NCHW_to_ImageDefault);
USE_LITE_KERNEL(layout, kOpenCL, kAny, kNCHW, ImageDefault_to_NCHW);
534 535 536

// relu image2d fp16
USE_LITE_KERNEL(relu, kOpenCL, kFP16, kImageDefault, ImageDefault);
537

538
// relu6 image2d fp16
539
USE_LITE_KERNEL(relu6, kOpenCL, kFP16, kImageDefault, ImageDefault);
540 541 542

// sigmoid image2d fp16
USE_LITE_KERNEL(sigmoid, kOpenCL, kFP16, kImageDefault, ImageDefault);