softmax_kernel.cpp 4.0 KB
Newer Older
H
Hao Han 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
sharper 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

#pragma once

#include "operators/kernel/softmax_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclSoftmaxOp : public acl::ACLOperator {
 public:
  AclSoftmaxOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_SOFTMAX;
  }
  ~AclSoftmaxOp() = default;
  AclSoftmaxOp(const AclSoftmaxOp&) = delete;
  AclSoftmaxOp& operator=(const AclSoftmaxOp&) = delete;
  AclSoftmaxOp(AclSoftmaxOp&&) = delete;
  AclSoftmaxOp& operator=(AclSoftmaxOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
  void InitAclLayer(const SoftmaxParam& param) {
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape shape(args.in_depth, args.batch);

    if (is_operator_init_done(shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    //[width, height, IFM]
    new_tensor(input(), shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), shape, args.output_data);

    acl_configure(softmax, this, NULL);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
  bool Bypass_acl(const SoftmaxParam& param) {
    bool bypass_acl = false;
    AclParametersByContext(param);
H
Hao Han 已提交
64
    InitAclLayer(param);
S
sharper 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_) {
      bypass_acl = true;
    }

    return bypass_acl;
  }

 private:
  void AclParametersByContext(const SoftmaxParam& param) {
    const framework::Tensor* in_x = param.InputX();
    framework::Tensor* out = param.Out();
    auto x_dims = in_x->dims();
    out->Resize(x_dims);

    const T* input_data = in_x->data<T>();
    T* output_data = out->data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;

    // NCHW
    args.batch = in_x->dims()[0];
    args.in_depth = in_x->dims()[1];

    args.out_num = out->dims()[0];

    // std::cout
    //  << "Out C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
  }
  acl::AclParameters args;
};

template <>
H
halsay 已提交
100
bool SoftmaxKernel<GPU_MALI, float>::Init(SoftmaxParam* param) {
S
sharper 已提交
101 102 103 104 105 106
  AclSoftmaxOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclSoftmaxOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclSoftmaxOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
H
halsay 已提交
107
  if (acl_op->Bypass_acl(*param)) {
H
Hao Han 已提交
108 109 110
    std::cout << "init acl failed" << std::endl;
    return false;
  }
S
sharper 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124
  return true;
}

template <>
void SoftmaxKernel<GPU_MALI, float>::Compute(const SoftmaxParam& param) const {
  std::cout << "init acl" << std::endl;
  AclSoftmaxOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclSoftmaxOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
  const float* input_data = (const float*)args.input_data;
  const float* output_data = (const float*)args.output_data;
H
Hao Han 已提交
125

S
sharper 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138
  for (int n = 0; n < args.out_num; ++n) {
    acl_op->RunAcl((void*)input_data, (void*)output_data);
    input_data += args.in_depth;
    output_data += args.in_depth;
  }
}

template class SoftmaxKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif