transpose_op.cc 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/core/subgraph_bridge_registry.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

std::vector<int> axis_to_nhwc(const std::vector<int>& axis) {
  std::vector<int> new_axis(axis.size());

  auto nhwc2nchw_axis = std::move(GetAxisNHWC2NCHW<int>(axis.size()));
  auto nchw2nhwc_axis = std::move(GetAxisNCHW2NHWC<int>(axis.size()));

  for (size_t i = 0; i < new_axis.size(); ++i) {
    new_axis[i] = nhwc2nchw_axis[axis[nchw2nhwc_axis[i]]];
  }
  return new_axis;
}

int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[MLU] Converting " + op_type + "...";

  // Get input vars and op attributes
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<Tensor>();
  auto x_dims = x->dims().Vectorize();

  auto out_var_name = op_info->Output("Out").front();
  auto output = scope->FindVar(out_var_name)->GetMutable<Tensor>();
  auto output_dims = output->dims().Vectorize();

  auto axis = op_info->GetAttr<std::vector<int>>("axis");
  std::vector<int> axis_nhwc = axis_to_nhwc(axis);

  auto output_tensor = graph->AddNode(
      out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, graph->FPType());

  CHECK(graph->HasNode(x_var_name));
  auto input_tensor = graph->GetNode(x_var_name);
  cnmlBaseOp_t transpose_op{nullptr};

  cnmlNdTransposeOpParam_t transpose_param{nullptr};

  CNML_CALL(cnmlCreateNdTransposeOpParam(
      &transpose_param, axis_nhwc.data(), axis_nhwc.size()));

  // Use cnmlCreatexxxOpForward to create op.
  CNML_CALL(cnmlCreateNdTransposeProOp(&transpose_op,
                                       input_tensor->mlu_tensor(),
                                       output_tensor->mlu_tensor(),
                                       transpose_param));

  graph->FuseOp(transpose_op);
  CNML_CALL(cnmlDestroyBaseOp(&transpose_op));
  return SUCCESS;
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(transpose,
                         kMLU,
                         paddle::lite::subgraph::mlu::TransposeConverter);
REGISTER_SUBGRAPH_BRIDGE(transpose2,
                         kMLU,
                         paddle::lite::subgraph::mlu::TransposeConverter);