precision_profiler.h 14.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements BasicProfile, a profiler that helps to profile the basic
 * CPU execution. It can display the min, max, average lantency of the execution
 * of each kernel.
 */
#pragma once
21
#include <cmath>
Y
Yan Chunwei 已提交
22 23 24 25
#include <string>
#include <vector>
#include "lite/core/program.h"

26 27 28 29 30 31
#ifdef LITE_WITH_OPENCL
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/kernels/opencl/image_helper.h"
#endif

Y
Yan Chunwei 已提交
32 33 34 35
namespace paddle {
namespace lite {
namespace profile {

T
TianXiaogang 已提交
36
template <typename dtype>
37
static bool write_tensorfile(const Tensor* tensor, const std::string& locate) {
T
TianXiaogang 已提交
38
  if (locate.find('/') != std::string::npos) {
39
    return false;
T
TianXiaogang 已提交
40 41 42 43
  }
  FILE* fp = fopen(locate.c_str(), "w");
  if (fp == nullptr) {
    LOG(ERROR) << "file open field " << locate;
44
    return false;
T
TianXiaogang 已提交
45 46 47 48 49 50 51
  } else {
    const dtype* data = tensor->data<dtype>();
    for (int i = 0; i < tensor->numel(); ++i) {
      fprintf(fp, "[%d] %f \n", i, static_cast<float>(data[i]));
    }
  }
  fclose(fp);
52
  return true;
T
TianXiaogang 已提交
53 54
}

Y
Yan Chunwei 已提交
55 56
class PrecisionProfiler {
 public:
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  // TODO(ysh329): need to remove `explicit PrecisionProfiler`
  // keep this method only for arm/math/conditional
  explicit PrecisionProfiler(const Instruction* inst) {
    std::string inst_precison_str = GetInstPrecision(inst);
  }

  PrecisionProfiler() {}

  std::string GetSummaryHeader() {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
    ss << "========================================= "
       << "Detailed Precision Profiler Summary "
       << "=========================================" << std::endl;
    ss << setw(45) << left << "operator:(kernel_info)"
       << " " << setw(70) << left << "output_tensor_name:(tensor_info)"
75 76 77 78
       << " " << setw(15) << left << "dims"
       << " " << setw(15) << left << "mean"
       << " " << setw(15) << left << "std_deviation"
       << " " << setw(15) << left << "ave_grow_rate*" << std::endl;
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    return ss.str();
  }

  template <typename T>
  double compute_mean(const T* in, const size_t length) {
    double sum = 0.;
    for (size_t i = 0; i < length; ++i) {
      sum += in[i];
    }
    return sum / length;
  }

  template <typename T>
  double compute_standard_deviation(const T* in,
                                    const size_t length,
                                    bool has_mean = false,
                                    double mean = 10000) {
    if (!has_mean) {
      mean = compute_mean<T>(in, length);
    }

    double variance = 0.;
    for (size_t i = 0; i < length; ++i) {
      variance += pow((in[i] - mean), 2);
    }
    variance /= length;
    return sqrt(variance);
  }

109 110 111 112 113 114 115 116 117 118 119
  template <typename T>
  double compute_average_grow_rate(const T* in, const size_t length) {
    const double eps = 1e-5;
    double ave_grow_rate = 0.0f;
    for (size_t i = 1; i < length; ++i) {
      ave_grow_rate += (in[i] - in[i - 1]) / (in[i - 1] + eps);
    }
    ave_grow_rate /= length;
    return ave_grow_rate;
  }

120 121 122 123 124 125 126 127 128 129 130 131 132 133
  // check if output tensor unused
  bool is_unused(const Tensor* in) {
    if (!in->data<int8_t>()) {
      return true;
    }
    return false;
  }

  void compute_tensor_precision_info(const Tensor* in,
                                     TargetType target_type,
                                     PrecisionType precision_type,
                                     DataLayoutType layout_type,
                                     double* mean,
                                     double* std_dev,
134 135 136
                                     double* ave_grow_rate,
                                     std::string name = "inst",
                                     bool write_result_to_file = false) {
137 138 139 140 141 142 143 144
    std::string unsupported_error_log =
        "Unsupported precision profile for kernel registered on" +
        TargetToStr(target_type) + "/" + PrecisionToStr(precision_type) + "/" +
        DataLayoutToStr(layout_type);

    if (target_type == TARGET(kARM) || target_type == TARGET(kHost) ||
        target_type == TARGET(kX86)) {
      switch (precision_type) {
Y
Yan Chunwei 已提交
145 146
        case PRECISION(kFloat): {
          auto ptr = in->data<float>();
147 148 149
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
150 151
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
152
          return;
T
TianXiaogang 已提交
153 154 155
        }
        case PRECISION(kAny): {
          auto ptr = in->data<float>();
156 157 158
          *mean = compute_mean<float>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<float>(ptr, in->numel(), true, *mean);
159 160
          *ave_grow_rate = compute_average_grow_rate<float>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
161
          return;
Y
Yan Chunwei 已提交
162 163 164
        }
        case PRECISION(kInt8): {
          auto ptr = in->data<int8_t>();
165 166 167
          *mean = compute_mean<int8_t>(ptr, in->numel());
          *std_dev =
              compute_standard_deviation<int8_t>(ptr, in->numel(), true, *mean);
168 169
          *ave_grow_rate = compute_average_grow_rate<int8_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int8_t>(in, name);
170
          return;
Y
Yan Chunwei 已提交
171 172 173
        }
        case PRECISION(kInt32): {
          auto ptr = in->data<int32_t>();
174 175 176
          *mean = compute_mean<int32_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int32_t>(
              ptr, in->numel(), true, *mean);
177 178
          *ave_grow_rate = compute_average_grow_rate<int32_t>(ptr, in->numel());
          write_result_to_file&& write_tensorfile<int32_t>(in, name);
179 180
          return;
        }
181 182 183 184 185 186 187
        case PRECISION(kInt64): {
          auto ptr = in->data<int64_t>();
          *mean = compute_mean<int64_t>(ptr, in->numel());
          *std_dev = compute_standard_deviation<int64_t>(
              ptr, in->numel(), true, *mean);
          return;
        }
188 189 190
        default:
          *mean = -333333333333;
          *std_dev = -33333333333;
191
          *ave_grow_rate = -33333333333;
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
          LOG(ERROR) << unsupported_error_log;
          return;
      }
#ifdef LITE_WITH_OPENCL
    } else if (target_type == TARGET(kOpenCL)) {
      switch (layout_type) {
        case DATALAYOUT(kImageDefault): {
          paddle::lite::CLImageConverterDefault default_convertor;
          auto image_shape = default_convertor.InitImageDimInfoWith(in->dims());
          size_t im_w = image_shape[0];
          size_t im_h = image_shape[1];
          VLOG(1) << "image shape(W,H) of " << name << ": " << im_w << " "
                  << im_h;
          std::vector<uint16_t> in_data_v(im_w * im_h * 4);
          std::vector<float> real_out_v(in->numel());
          const size_t cl_image2d_row_pitch{0};
          const size_t cl_image2d_slice_pitch{0};
          TargetWrapperCL::ImgcpySync(in_data_v.data(),
                                      in->data<uint16_t, cl::Image2D>(),
                                      im_w,
                                      im_h,
                                      cl_image2d_row_pitch,
                                      cl_image2d_slice_pitch,
                                      IoDirection::DtoH);
          default_convertor.ImageToNCHW(
              in_data_v.data(), real_out_v.data(), image_shape, in->dims());
          CHECK(real_out_v.size() == in->numel());
          *mean = compute_mean<float>(real_out_v.data(), real_out_v.size());
          *std_dev = compute_standard_deviation<float>(
              real_out_v.data(), in->numel(), true, *mean);
222 223 224
          *ave_grow_rate = compute_average_grow_rate<float>(real_out_v.data(),
                                                            real_out_v.size());
          write_result_to_file&& write_tensorfile<float>(in, name);
225 226 227 228 229 230 231 232 233 234 235 236
          return;
        }
        case DATALAYOUT(kNCHW): {
          std::vector<float> in_data_v(in->numel(), 0);
          TargetWrapperCL::MemcpySync(in_data_v.data(),
                                      in->data<float>(),
                                      in->numel() * sizeof(float),
                                      IoDirection::DtoH);
          VLOG(1) << name << ":" << in->numel();
          *mean = compute_mean<float>(in_data_v.data(), in->numel());
          *std_dev = compute_standard_deviation<float>(
              in_data_v.data(), in->numel(), true, *mean);
237 238 239
          *ave_grow_rate =
              compute_average_grow_rate<float>(in_data_v.data(), in->numel());
          write_result_to_file&& write_tensorfile<float>(in, name);
240
          return;
Y
Yan Chunwei 已提交
241 242
        }
        default:
243 244
          *mean = -222222222222;
          *std_dev = -22222222222;
245
          *ave_grow_rate = -22222222222;
246 247
          LOG(ERROR) << unsupported_error_log;
          return;
Y
Yan Chunwei 已提交
248
      }
249 250 251 252
#endif
    } else {
      *mean = -111111111111;
      *std_dev = -11111111111;
253
      *ave_grow_rate = -11111111111;
254 255 256 257 258 259 260 261 262 263
      LOG(ERROR) << unsupported_error_log;
      return;
    }
  }

  std::string GetInstPrecision(const Instruction* inst = nullptr) {
    using std::setw;
    using std::left;
    using std::fixed;
    STL::stringstream ss;
264
    bool write_result_to_file = false;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    VLOG(1) << ">> Running kernel: " << inst->op()->op_info()->Repr()
            << " registered on " << TargetToStr(inst->kernel()->target()) << "/"
            << PrecisionToStr(inst->kernel()->precision()) << "/"
            << DataLayoutToStr(inst->kernel()->layout());

    std::string kernel_repr = inst->op()->op_info()->Repr();
    std::string kernel_place = TargetToStr(inst->kernel()->target()) + "/" +
                               PrecisionToStr(inst->kernel()->precision()) +
                               "/" + DataLayoutToStr(inst->kernel()->layout());
    std::string op_name = inst->op()->op_info()->Type();

    if (inst->op()->op_info()->Type() != "fetch") {
      auto op = const_cast<lite::OpLite*>(inst->op());
      auto kernel = inst->kernel();
Y
Yan Chunwei 已提交
280 281 282 283 284 285
      auto op_scope = op->scope();
      auto out_names = op->op_info()->output_names();
      for (auto& out_name : out_names) {
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
T
TianXiaogang 已提交
286

Y
Yan Chunwei 已提交
287
        if (type->IsTensor()) {
288 289 290 291
          const Tensor* tout =
              op_scope->FindVar(out_name)->GetMutable<Tensor>();
          double mean = -999999;
          double std_dev = -100000;
292
          double ave_grow_rate = 99999;
293 294
          std::string mean_str{"unused"};
          std::string std_dev_str{"unused"};
295
          std::string ave_grow_rate_str{"unused"};
296 297 298 299 300 301 302 303

          if (!is_unused(tout)) {
            compute_tensor_precision_info(tout,
                                          type->target(),
                                          type->precision(),
                                          type->layout(),
                                          &mean,
                                          &std_dev,
304 305 306 307 308 309
                                          &ave_grow_rate,
                                          out_name,
                                          write_result_to_file);
            mean_str = std::to_string(mean);
            std_dev_str = std::to_string(std_dev);
            ave_grow_rate_str = std::to_string(ave_grow_rate);
310 311 312 313 314 315 316 317 318 319
          }
          std::string kernel_info = op_name + ":" + kernel_place;
          std::string output_arg_info = out_name + ":" +
                                        TargetToStr(type->target()) + "/" +
                                        PrecisionToStr(type->precision()) +
                                        "/" + DataLayoutToStr(type->layout());

          ss << setw(45) << left << kernel_info << " " << setw(70) << left
             << output_arg_info << " " << setw(15) << left << tout->dims()
             << " " << setw(15) << left << mean_str << " " << setw(15) << left
320 321
             << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
             << std::endl;
Y
Yan Chunwei 已提交
322
        } else if (type->IsTensorList()) {
323
          auto touts =
Y
Yan Chunwei 已提交
324
              op_scope->FindVar(out_name)->GetMutable<std::vector<Tensor>>();
325 326 327 328
          for (auto t : *touts) {
            const Tensor* tout = &t;
            double mean = -999999;
            double std_dev = -100000;
329
            double ave_grow_rate = 99999;
330 331
            std::string mean_str{"unused"};
            std::string std_dev_str{"unused"};
332
            std::string ave_grow_rate_str{"unused"};
333 334 335 336 337 338 339 340

            if (!is_unused(tout)) {
              compute_tensor_precision_info(tout,
                                            type->target(),
                                            type->precision(),
                                            type->layout(),
                                            &mean,
                                            &std_dev,
341 342 343 344 345 346
                                            &ave_grow_rate,
                                            out_name,
                                            write_result_to_file);
              mean_str = std::to_string(mean);
              std_dev_str = std::to_string(std_dev);
              ave_grow_rate_str = std::to_string(ave_grow_rate);
347 348 349 350 351 352 353 354 355 356
            }
            std::string kernel_info = op_name + ":" + kernel_place;
            std::string output_arg_info = out_name + ":" +
                                          TargetToStr(type->target()) + "/" +
                                          PrecisionToStr(type->precision()) +
                                          "/" + DataLayoutToStr(type->layout());

            ss << setw(45) << left << kernel_info << " " << setw(70) << left
               << output_arg_info << " " << setw(15) << left << tout->dims()
               << " " << setw(15) << left << mean_str << " " << setw(15) << left
357 358
               << std_dev_str << " " << setw(15) << left << ave_grow_rate_str
               << std::endl;
Y
Yan Chunwei 已提交
359 360 361 362
          }
        }
      }
    }
363
    return ss.str();
Y
Yan Chunwei 已提交
364 365 366 367 368 369 370
  }
};

}  // namespace profile
}  // namespace lite
}  // namespace paddle

371 372
// TODO(ysh329): need to remove.
// keep this method only for arm/math/conditional_block_compute
Y
Yan Chunwei 已提交
373 374
#define LITE_PRECISION_PROFILE(inst) \
  { auto a = paddle::lite::profile::PrecisionProfiler(&inst); }