paddle_mobile.cpp 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18 19 20
#ifdef _OPENMP
#include <omp.h>
#endif  // _OPENMP
21
#ifdef PADDLE_MOBILE_CL
22 23
#include <CL/cl.h>
#include "framework/cl/cl_tensor.h"
24
#endif
25
#include "operators/math/gemm.h"
26

27 28
namespace paddle_mobile {

29 30
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
31 32 33
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
34
}
35

36 37 38
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
39
                                       int batch_size, bool lod_mode) {
40
  if (loader_.get() == nullptr) {
41
    loader_ = std::make_shared<framework::Loader<Device, T>>();
42 43 44 45 46
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
47
    executor_ = std::make_shared<framework::Executor<Device, T>>(
H
hjchen2 已提交
48
        loader_->Load(dirname, optimize, quantification), batch_size, optimize,
49
        lod_mode);
50 51 52 53
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

54
  return PMSuccess;
55 56
}

57 58 59 60
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
61
                                       int batch_size, bool lod_mode) {
62
  if (loader_.get() == nullptr) {
63
    loader_ = std::make_shared<framework::Loader<Device, T>>();
64 65 66 67 68
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
69
    executor_ = std::make_shared<framework::Executor<Device, T>>(
W
wangliu 已提交
70
        loader_->Load(model_path, para_path, optimize, quantification),
71
        batch_size, optimize, lod_mode);
72 73 74 75
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

76
  return PMSuccess;
77 78
}

79
template <typename Device, typename T>
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
PMStatus PaddleMobile<Device, T>::Load(const PaddleMobileConfig &config) {
  if (!config.model_dir.empty()) {
    return this->Load(config.model_dir, config.optimize, config.quantification,
                      config.batch_size, config.lod_mode);
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    return this->Load(config.prog_file, config.param_file, config.optimize,
                      config.quantification, config.batch_size,
                      config.lod_mode);
  } else {
    LOG(kLOG_ERROR) << "Failed to load inference model";
    return PMNotInitialized;
  }
}

template <typename Device, typename T>
95 96 97 98
bool PaddleMobile<Device, T>::LoadCombinedMemory(size_t model_len,
                                                 const uint8_t *model_buf,
                                                 size_t combined_params_len,
                                                 uint8_t *combined_params_buf) {
H
hjchen2 已提交
99
  int batch_size = 1;
100 101 102
  bool optimise = true;
  bool quantification = false;
  if (loader_.get() == nullptr) {
103
    loader_ = std::make_shared<framework::Loader<Device, T>>();
104 105 106 107
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
108
    executor_ = std::make_shared<framework::Executor<Device, T>>(
109 110
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
                                    combined_params_buf, optimise,
111
                                    quantification),
H
hjchen2 已提交
112
        batch_size, optimise);
113 114 115 116
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

117 118 119 120 121 122 123 124
  return PMSuccess;
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
125
}
126 127 128 129 130 131 132 133 134 135 136 137

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
138 139
}

140 141 142 143
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
144 145
}

146 147 148
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
149 150 151
  return executor_->Predict(input, dims);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::Tensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Feed(const framework::LoDTensor &input,
                                   const std::string &var_name) {
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
177 178 179
  executor_ = nullptr;
  loader_ = nullptr;
}
180 181 182

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
183 184 185

#ifdef PADDLE_MOBILE_CPU
template <>
186
double PaddleMobile<CPU, float>::GetPredictTime() {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
202
    a[i] = t1 + rand() % t2;  // NOLINT
203 204
  }
  for (int i = 0; i < k * n; ++i) {
205
    b[i] = t1 + rand() % t2;  // NOLINT
206
  }
207 208

  operators::math::Gemm gemm;
209
  auto time1 = paddle_mobile::time();
Y
yangfei 已提交
210
  gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
211 212
             static_cast<float>(0), c, ldc, false,
             static_cast<float *>(nullptr));
213 214 215 216 217 218 219
  auto time2 = paddle_mobile::time();
  double cost = paddle_mobile::time_diff(time1, time2);
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
220
#endif
221

222
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
223 224
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
225
                                             std::string var_name) {
226 227 228
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
229 230
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
231 232 233
  executor_->FeedData(t);
}

H
hjchen2 已提交
234 235
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
236
    int id) {
237 238 239
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
240 241
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
242 243 244
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
245 246
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
247 248 249
  executor_->Predict_From(start);
}

H
hjchen2 已提交
250 251
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
252 253 254 255
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
256
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
257
static std::mutex lc;
H
hjchen2 已提交
258 259
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
260 261 262 263
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
264
}
265
template <>
H
hjchen2 已提交
266
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
267 268 269
  cl_int status;
  cl_uint nPlatform;
  clGetPlatformIDs(0, NULL, &nPlatform);
Y
yangfei 已提交
270 271
  cl_platform_id *listPlatform = reinterpret_cast<cl_platform_id *>(
      malloc(nPlatform * sizeof(cl_platform_id)));
272 273 274 275
  clGetPlatformIDs(nPlatform, listPlatform, NULL);
  cl_uint nDevice = 0;
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, 0, NULL, &nDevice);
  cl_device_id *listDevice =
Y
yangfei 已提交
276
      reinterpret_cast<cl_device_id *>(malloc(nDevice * sizeof(cl_device_id)));
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  clGetDeviceIDs(listPlatform[0], CL_DEVICE_TYPE_GPU, nDevice, listDevice,
                 NULL);
  cl_context context =
      clCreateContext(NULL, nDevice, listDevice, NULL, NULL, &status);
  cl_command_queue queue =
      clCreateCommandQueue(context, listDevice[0], 0, &status);

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
332 333 334 335 336 337
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
338 339 340 341
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
342
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
343
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
344
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
345
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
346 347 348 349 350 351 352
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
353 354
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
355
  size_t global_work_size[3] = {1, 224, 224};
356 357 358

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
359
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
360 361 362
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
363 364 365 366 367 368 369
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

370 371 372 373
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
374 375 376
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
377
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
378
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
379
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
380 381 382 383 384
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
385 386
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
387
  size_t global_work_size1[3] = {1, 3, 96};
388 389 390

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
391
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
458 459 460 461 462
  if (status == CL_SUCCESS) {
    return paddle_mobile::time_diff(time1, time2);
  } else {
    return -1;
  }
463
}
H
hjchen2 已提交
464 465
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
466
    const char *kernelPath,
Y
yangfei 已提交
467
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
485
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
486 487 488 489 490 491 492 493
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
494 495
#endif

496 497 498 499
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
500

501
}  // namespace paddle_mobile