roialign_pool_kernel.cpp 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ROIALIGN_POOL_OP

#include <cmath>
#include <vector>
#include "operators/kernel/detection_kernel.h"

#include "fpga/V1/api.h"
#include "fpga/V1/image.h"

namespace paddle_mobile {
namespace operators {

template <>
bool RoiAlignPoolKernel<FPGA, float>::Init(RoiAlignPoolParam<FPGA>* param) {
  auto dims = param->input_x_->dims();
  PADDLE_MOBILE_ENFORCE(dims[1] * dims[3] % IMAGE_ALIGNMENT == 0,
                        "data not aligned");

  param->float_input = std::make_shared<Tensor>();
  param->float_input->mutable_data<float>(param->input_x_->dims());

  auto input = param->input_x_;
  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_HWC;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_input->mutable_data<float>();
  args.output.scale_address = param->float_input->scale;
  param->input_arg = args;

  auto* rois = param->input_rois_;
  int rois_num = rois->dims()[0];
  framework::DDim dims_out_new = framework::make_ddim(
      {rois_num, param->output_->dims()[1], param->output_->dims()[2],
       param->output_->dims()[3]});
  param->output_->Resize(dims_out_new);

  param->output_->mutable_data<float>(dims_out_new);

  return true;
}

template <typename T>
struct PreCalc {
  int pos1;
  int pos2;
  int pos3;
  int pos4;
  T w1;
  T w2;
  T w3;
  T w4;
};

template <typename T>
void pre_calc_for_bilinear_interpolate(
J
jameswu2014 已提交
76 77 78 79 80
    const int height, const int width, const int pooled_height,
    const int pooled_width, const int iy_upper, const int ix_upper,
    T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w,
    int roi_bin_grid_h, int roi_bin_grid_w,
    std::vector<PreCalc<T>>& pre_calc) {  // NOLINT
81 82 83 84 85
  int pre_calc_index = 0;
  for (int ph = 0; ph < pooled_height; ph++) {
    for (int pw = 0; pw < pooled_width; pw++) {
      for (int iy = 0; iy < iy_upper; iy++) {
        const T yy = roi_start_h + ph * bin_size_h +
J
jameswu2014 已提交
86 87
                     static_cast<T>(iy + .5f) * bin_size_h /
                         static_cast<T>(roi_bin_grid_h);  // e.g., 0.5, 1.5
88 89
        for (int ix = 0; ix < ix_upper; ix++) {
          const T xx = roi_start_w + pw * bin_size_w +
J
jameswu2014 已提交
90 91
                       static_cast<T>(ix + .5f) * bin_size_w /
                           static_cast<T>(roi_bin_grid_w);
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

          T x = xx;
          T y = yy;
          // deal with: inverse elements are out of feature map boundary
          if (y < -1.0 || y > height || x < -1.0 || x > width) {
            // empty
            PreCalc<T> pc;
            pc.pos1 = 0;
            pc.pos2 = 0;
            pc.pos3 = 0;
            pc.pos4 = 0;
            pc.w1 = 0;
            pc.w2 = 0;
            pc.w3 = 0;
            pc.w4 = 0;
            pre_calc[pre_calc_index] = pc;
            pre_calc_index += 1;
            continue;
          }

          if (y <= 0) {
            y = 0;
          }
          if (x <= 0) {
            x = 0;
          }

J
jameswu2014 已提交
119 120
          int y_low = static_cast<int>(y);
          int x_low = static_cast<int>(x);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
          int y_high;
          int x_high;

          if (y_low >= height - 1) {
            y_high = y_low = height - 1;
            y = (T)y_low;
          } else {
            y_high = y_low + 1;
          }

          if (x_low >= width - 1) {
            x_high = x_low = width - 1;
            x = (T)x_low;
          } else {
            x_high = x_low + 1;
          }

          T ly = y - y_low;
          T lx = x - x_low;
          T hy = 1. - ly, hx = 1. - lx;
          T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

          // save weights and indeces
          PreCalc<T> pc;
          pc.pos1 = y_low * width + x_low;
          pc.pos2 = y_low * width + x_high;
          pc.pos3 = y_high * width + x_low;
          pc.pos4 = y_high * width + x_high;
          pc.w1 = w1;
          pc.w2 = w2;
          pc.w3 = w3;
          pc.w4 = w4;
          pre_calc[pre_calc_index] = pc;

          pre_calc_index += 1;
        }
      }
    }
  }
}

template <typename T>
J
jameswu2014 已提交
163 164 165 166 167
void ROIAlignForward(const int nthreads, const T* bottom_data,
                     const T& spatial_scale, const int channels,
                     const int height, const int width, const int pooled_height,
                     const int pooled_width, const int sampling_ratio,
                     const T* bottom_rois, T* top_data) {
168 169 170 171 172 173 174 175 176
  int n_rois = nthreads / channels / pooled_width / pooled_height;

  for (int n = 0; n < n_rois; n++) {
    int index_n = n * channels * pooled_width * pooled_height;

    // roi could have 4 or 5 columns
    const T* offset_bottom_rois = bottom_rois + n * 4;
    int roi_batch_ind = 0;
    // if (roi_cols == 5) {
J
jameswu2014 已提交
177 178
    // roi_batch_ind = offset_bottom_rois[0];
    // offset_bottom_rois++;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    // }

    // Do not using rounding; this implementation detail is critical
    T roi_start_w = offset_bottom_rois[0] * spatial_scale;
    T roi_start_h = offset_bottom_rois[1] * spatial_scale;
    T roi_end_w = offset_bottom_rois[2] * spatial_scale;
    T roi_end_h = offset_bottom_rois[3] * spatial_scale;
    // T roi_start_w = round(offset_bottom_rois[0] * spatial_scale);
    // T roi_start_h = round(offset_bottom_rois[1] * spatial_scale);
    // T roi_end_w = round(offset_bottom_rois[2] * spatial_scale);
    // T roi_end_h = round(offset_bottom_rois[3] * spatial_scale);

    // Force malformed ROIs to be 1x1
    T roi_width = std::max(roi_end_w - roi_start_w, (T)1.);
    T roi_height = std::max(roi_end_h - roi_start_h, (T)1.);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
J
jameswu2014 已提交
199 200
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);  // e.g., = 2
201 202 203 204
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
J
jameswu2014 已提交
205
    const T count = roi_bin_grid_h * roi_bin_grid_w;  // e.g. = 4
206 207 208

    // we want to precalculate indeces and weights shared by all chanels,
    // this is the key point of optimiation
J
jameswu2014 已提交
209 210
    std::vector<PreCalc<T>> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
                                     pooled_width * pooled_height);
211
    pre_calc_for_bilinear_interpolate(
J
jameswu2014 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        height, width, pooled_height, pooled_width, roi_bin_grid_h,
        roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
        roi_bin_grid_h, roi_bin_grid_w, pre_calc);

    for (int c = 0; c < channels; c++) {
      int index_n_c = index_n + c * pooled_width * pooled_height;
      const T* offset_bottom_data =
          bottom_data + (roi_batch_ind * channels + c) * height * width;
      int pre_calc_index = 0;

      for (int ph = 0; ph < pooled_height; ph++) {
        for (int pw = 0; pw < pooled_width; pw++) {
          int index = index_n_c + ph * pooled_width + pw;

          T output_val = 0.;
          for (int iy = 0; iy < roi_bin_grid_h; iy++) {
            for (int ix = 0; ix < roi_bin_grid_w; ix++) {
              PreCalc<T> pc = pre_calc[pre_calc_index];
              output_val += pc.w1 * offset_bottom_data[pc.pos1] +
                            pc.w2 * offset_bottom_data[pc.pos2] +
                            pc.w3 * offset_bottom_data[pc.pos3] +
                            pc.w4 * offset_bottom_data[pc.pos4];

              pre_calc_index += 1;
236
            }
J
jameswu2014 已提交
237 238
          }
          output_val /= count;
239

J
jameswu2014 已提交
240 241 242 243 244
          top_data[index] = output_val;
        }  // for pw
      }    // for ph
    }      // for c
  }        // for n
245 246 247
}

template <>
J
jameswu2014 已提交
248 249 250
void RoiAlignPoolKernel<FPGA, float>::Compute(
    const RoiAlignPoolParam<FPGA>& param) {
  auto input_tensor = param.float_input.get();
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  fpga::PerformBypass(param.input_arg);
  fpga::fpga_invalidate(input_tensor->data<float>(),
                        input_tensor->numel() * sizeof(float));

  auto* in = input_tensor;
  auto* rois = param.input_rois_;
  auto* out = param.output_;  // param.float_output.get();

  auto pooled_height = param.pooled_height_;
  auto pooled_width = param.pooled_width_;
  auto spatial_scale = param.spatial_scale_;
  auto sampe_ratio = param.sampling_ratio_;

  auto in_dims = in->dims();
  int batch_size = in_dims[0];
  int input_channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];
  int rois_num = rois->dims()[0];

  auto data_nhwc = in->mutable_data<float>();

  fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width);
  framework::DDim dims_out_new = framework::make_ddim(
      {rois_num, (param.output_)->dims()[1], (((param.output_)->dims()[2])),
       (param.output_)->dims()[3]});
  (param.output_)->Resize(dims_out_new);
J
jameswu2014 已提交
278

279 280 281
  const int index = input_channels * pooled_height * pooled_width * rois_num;
  auto rois_data = rois->data<float>();
  auto top_data = param.output_->mutable_data<float>();
J
jameswu2014 已提交
282 283 284 285
  for (int i = 0; i < index; ++i) {
    ROIAlignForward<float>(index, data_nhwc, spatial_scale, input_channels,
                           height, width, pooled_height, pooled_width,
                           sampe_ratio, rois_data, top_data);
286 287
  }

J
jameswu2014 已提交
288
  fpga::image::convert_to_hwc(&top_data, input_channels, pooled_height,
289
                              pooled_width, rois_num);
J
jameswu2014 已提交
290
  out->reset_data_ptr(top_data);
291 292 293 294 295 296
}

}  // namespace operators
}  // namespace paddle_mobile

#endif  // ROIALIGN_POOL_OP