run.py 12.5 KB
Newer Older
Y
Yanzhan Yang 已提交
1
# -*- coding: utf-8 -*
Y
Yanzhan Yang 已提交
2 3 4 5 6 7 8 9 10 11 12
import os
import sys
import math
import subprocess
import numpy as np
import paddle.fluid as fluid

model_path = "model"
checked_model_path = "checked_model"
feed_path = "feeds"
output_path = "outputs"
Y
Yanzhan Yang 已提交
13
diff_threshold = 0.01
14
is_lod = True
Y
Yanzhan Yang 已提交
15 16

np.set_printoptions(linewidth=150)
Y
Yanzhan Yang 已提交
17 18 19 20 21 22 23

mobile_exec_root = "/data/local/tmp/bin"
mobile_src_root = os.path.abspath("../../../")
if mobile_src_root.endswith("/"):
    mobile_src_root = mobile_src_root[:-1]

dot = "•"
Y
Yanzhan Yang 已提交
24 25 26 27
black = lambda x: "\033[30m" + str(x) + "\033[0m"
red = lambda x: "\033[31m" + str(x) + "\033[0m"
green = lambda x: "\033[32m" + str(x) + "\033[0m"
yellow = lambda x: "\033[33m" + str(x) + "\033[0m"
Y
Yanzhan Yang 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
reset = lambda x: "\033[0m" + str(x)

def pp_tab(x, level=0):
    header = ""
    for i in range(0, level):
        header += "\t"
    print(header + str(x))
def pp_black(x, level=0):
    pp_tab(black(x) + reset(""), level)
def pp_red(x, level=0):
    pp_tab(red(x) + reset(""), level)
def pp_green(x, level=0):
    pp_tab(green(x) + reset(""), level)
def pp_yellow(x, level=0):
    pp_tab(yellow(x) + reset(""), level)

def sh(command):
    pipe = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    return pipe.stdout.read().decode("utf-8")
def push(src, dest=""):
    sh("adb push {} {}".format(src, mobile_exec_root + "/" + dest))

pp_yellow(dot + " start inspecting fluid model")

exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())

# 加载模型
def load_model(model_path):
    prog, feeds, fetches = fluid.io.load_inference_model(dirname=model_path, executor=exe, model_filename="model", params_filename="params")
    return (prog, feeds, fetches)

prog, feeds, fetches = load_model(model_path)

# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
63
def resave_model(feed_kv):
Y
Yanzhan Yang 已提交
64 65 66 67 68
    ops = prog.current_block().ops
    vars = prog.current_block().vars
    # 强制所有var为可持久化
    p_names = []
    for name in vars:
Y
Yanzhan Yang 已提交
69
        name = str(name)
Y
Yanzhan Yang 已提交
70 71 72 73
        v = fluid.framework._get_var(name, prog)
        if not v.persistable:
            v.persistable = True
            p_names.append(name)
74
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
75 76 77
    has_found_wrong_shape = False
    # 修正每个var的形状
    for name in vars:
Y
Yanzhan Yang 已提交
78
        name = str(name)
Y
Yanzhan Yang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        v = vars[name]
        if v.persistable:
            v1 = fluid.global_scope().find_var(name)
            try:
                t1 = v1.get_tensor()
                shape = t1.shape()
            except:
                continue
            if v.desc.shape() != shape:
                has_found_wrong_shape = True
            v.desc.set_shape(shape)
    # 恢复var的可持久化属性
    for name in p_names:
        v = fluid.framework._get_var(name, prog)
        v.persistable = False
    fluid.io.save_inference_model(dirname=checked_model_path, feeded_var_names=feeds, target_vars=fetches, executor=exe, main_program=prog, model_filename="model", params_filename="params")
    if has_found_wrong_shape:
        pp_red("has found wrong shape", 1)
    else:
        pp_green("has not found wrong shape", 1)
    pp_green("new model is saved into directory 【{}】".format(checked_model_path), 1)

# 生成feed的key-value对
def gen_feed_kv():
    feed_kv = {}
    for feed_name in feeds:
        feed_shape = get_var_shape(feed_name)
        data = np.random.random(feed_shape).astype("float32")
        feed_kv[feed_name] = data
    return feed_kv

# 保存feed的key-value对
def save_feed_kv(feed_kv):
    for feed_name in feed_kv:
        feed_data = feed_kv[feed_name]
        feed_list = feed_data.flatten().tolist()
        if not os.path.exists(feed_path):
            os.mkdir(feed_path)
        file_name = feed_name.replace("/", "_")
        out_file = open(feed_path + "/" + file_name, "w")
        for feed_item in feed_list:
            out_file.write("{}\n".format(feed_item))
        out_file.close()

last_feed_var_name = None
last_feed_file_name = None
125
last_feed_var_lod = None
Y
Yanzhan Yang 已提交
126 127
# 加载feed的key-value对
def load_feed_kv():
Y
Yanzhan Yang 已提交
128 129
    if not os.path.exists(feed_path):
        return None
Y
Yanzhan Yang 已提交
130 131
    global last_feed_var_name
    global last_feed_file_name
132
    global last_feed_var_lod
Y
Yanzhan Yang 已提交
133 134 135 136 137 138 139 140 141
    feed_kv = {}
    pp_yellow(dot + dot + " checking feed info")
    pp_green("feed data is saved into directory 【{}】".format(feed_path), 1)
    for feed_name in feeds:
        feed_shape = get_var_shape(feed_name)
        pp_tab("feed var name : {}; feed var shape : {}".format(feed_name, feed_shape), 1)
        file_name = feed_name.replace("/", "_")
        last_feed_var_name = feed_name
        last_feed_file_name = file_name
Y
Yanzhan Yang 已提交
142 143 144 145 146 147 148 149 150 151
        feed_file_path = feed_path + "/" + file_name
        if not os.path.exists(feed_file_path):
            return None
        data = np.loadtxt(feed_file_path)
        expected_len = 1
        for dim in feed_shape:
            expected_len *= dim
        if len(data) != expected_len:
            return None
        data = data.reshape(feed_shape).astype("float32")
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        
        if is_lod:
            data = data.reshape((1, *feed_shape)).astype("float32")
            tensor = fluid.LoDTensor()
            seq_lens = [len(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += 1
                lod.append(cur_len)
            data = data.reshape(feed_shape)
            tensor.set(data, fluid.CPUPlace())
            tensor.set_lod([lod])
            last_feed_var_lod = lod
            feed_kv[feed_name] = tensor
        else:
            feed_kv[feed_name] = data
Y
Yanzhan Yang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    return feed_kv

# 运行模型
def run_model(feed_kv=None):
    if feed_kv is None:
        feed_kv = gen_feed_kv()
    outputs = exe.run(prog, feed=feed_kv, fetch_list=fetches, return_numpy=False)
    results = []
    for output in outputs:
        results.append(np.array(output))
    return results

# 获取变量形状
def get_var_shape(var_name):
    vars = prog.current_block().vars
    shape = vars[var_name].desc.shape()
    for i in range(len(shape)):
        dim = shape[i]
        if dim == -1:
            shape[i] = 1
    return shape

# 获取var的数据
def get_var_data(var_name, feed_kv=None):
    # 强制var为可持久化
    v = fluid.framework._get_var(var_name, prog)
    persistable = v.persistable
    if not persistable:
        v.persistable = True
    outputs = run_model(feed_kv=feed_kv)
    output = np.array(fluid.global_scope().find_var(var_name).get_tensor())
    # 恢复var的可持久化属性
    v.persistable = persistable
    return output

output_var_cache = {}
Y
Yanzhan Yang 已提交
205
sample_step = 1
Y
Yanzhan Yang 已提交
206
def tensor_sample(tensor):
Y
Yanzhan Yang 已提交
207
    # step = math.floor(len(tensor) / 20)
Y
Yanzhan Yang 已提交
208
    sample = []
Y
Yanzhan Yang 已提交
209
    for i in range(0, len(tensor), sample_step):
Y
Yanzhan Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        sample.append(tensor[i])
    return sample
op_cache = {}

# 获取每层输出的数据
def save_all_op_output(feed_kv=None):
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    ops = prog.current_block().ops
    for i in range(len(ops)):
        op = ops[i]
        var_name = None
        for name in op.output_arg_names:
            var_name = name
            if "tmp" in name:
                break
226 227
        if "sequence_pool" in name:
            continue
Y
Yanzhan Yang 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
            for item in data:
                out_file.write("{}\n".format(item))
            out_file.close()
        except:
            pass
    pp_green("all the op outputs are saved into directory 【{}】".format(output_path), 1)

ops = prog.current_block().ops
vars = prog.current_block().vars

pp_yellow(dot + dot + " checking op list")
op_types = set()
for op in ops:
    op_types.add(op.type)
pp_tab("op types : {}".format(op_types), 1)

Y
Yanzhan Yang 已提交
251 252 253 254 255 256 257 258
def check_mobile_results(args, fuse, mem_opt):
    args = "{} {} {}".format("1" if fuse else "0", "1" if mem_opt else "0", args)
    res = sh("adb shell \"cd {} && export LD_LIBRARY_PATH=. && ./test-net {}\"".format(mobile_exec_root, args))
    lines = res.split("\n")
    for line in lines:
        if line.startswith("auto-test-debug"):
            print(line)
    pp_yellow(dot + dot + " checking paddle mobile results for {} -- {} ".format(green("【fusion】" if fuse else "【non fusion】"), green("【memory-optimization】" if mem_opt else "【non-memory-optimization】")))
Y
Yanzhan Yang 已提交
259 260 261
    mobile_var_cache = {}
    for line in lines:
        parts = line.split(" ")
Y
Yanzhan Yang 已提交
262 263 264
        if len(parts) < 2:
            continue
        if "auto-test" != parts[0]:
Y
Yanzhan Yang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278
            continue
        if parts[1] == "load-time-cost":
            pp_green("load time cost : {}".format(parts[2]), 1) 
        elif parts[1] == "predict-time-cost":
            pp_green("predict time cost : {}".format(parts[2]), 1) 
        elif parts[1] == "var":
            var_name = parts[2]
            values = list(map(lambda x: float(x), parts[3:]))
            mobile_var_cache[var_name] = values
    error_index = None
    error_values1 = None
    error_values2 = None
    for index in op_cache:
        op_output_var_name, op = op_cache[index]
Y
Yanzhan Yang 已提交
279 280 281 282 283 284 285 286
        if mem_opt:
            found_in_fetch = False
            for fetch in fetches:
                if op_output_var_name == fetch.name:
                    found_in_fetch = True
                    break
            if not found_in_fetch:
                continue
Y
Yanzhan Yang 已提交
287 288 289 290 291 292 293 294 295 296 297 298
        if not op_output_var_name in output_var_cache:
            continue
        if not op_output_var_name in mobile_var_cache:
            continue
        values1 = output_var_cache[op_output_var_name]
        values2 = mobile_var_cache[op_output_var_name]
        if len(values1) != len(values2):
            error_index = index
        if error_index == None:
            for i in range(len(values1)):
                v1 = values1[i]
                v2 = values2[i]
Y
Yanzhan Yang 已提交
299
                if abs(v1 - v2) > diff_threshold:
Y
Yanzhan Yang 已提交
300 301 302 303 304 305 306 307 308
                    error_index = index
                    break
        if error_index != None:
            error_values1 = values1
            error_values2 = values2
            break
    if error_index == None:
        pp_green("outputs are all correct", 1)
    else:
Y
Yanzhan Yang 已提交
309 310
        error_values1 = np.array(error_values1)
        error_values2 = np.array(error_values2)
Y
Yanzhan Yang 已提交
311
        pp_red("{} op's output is not correct, op's type is {}".format(error_index, op_cache[error_index][1].type), 1)
Y
Yanzhan Yang 已提交
312 313 314 315
        pp_red("fluid results are : ", 1)
        pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
        pp_red("paddle mobile results are : ", 1)
        pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
Y
Yanzhan Yang 已提交
316 317 318 319 320 321
    # print(output_var_cache)
    # print(mobile_var_cache)

def main():
    # 加载kv
    feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
322 323 324 325
    if feed_kv == None:
        feed_kv = gen_feed_kv()
        save_feed_kv(feed_kv)
        feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
326 327 328 329 330 331 332 333 334
    pp_yellow(dot + dot + " checking fetch info")
    for fetch in fetches:
        pp_tab("fetch var name : {}".format(fetch.name), 1)
    # 预测
    pp_yellow(dot + dot + " checking inference")
    outputs = run_model(feed_kv=feed_kv)
    pp_tab("fluid output : {}".format(outputs), 1)
    # 重新保存模型
    pp_yellow(dot + dot + " checking model correctness")
335
    resave_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    # 输出所有中间结果
    pp_yellow(dot + dot + " checking output result of every op")
    save_all_op_output(feed_kv=feed_kv)
    # 开始检查mobile的正确性
    print("")
    print("==================================================")
    print("")
    pp_yellow(dot + " start inspecting paddle mobile correctness & performance")
    push(checked_model_path)
    push(feed_path + "/" + last_feed_file_name, "input.txt")
    push(mobile_src_root + "/build/release/arm-v7a/build/libpaddle-mobile.so")
    push(mobile_src_root + "/test/build/test-net")
    last_feed_var_shape = get_var_shape(last_feed_var_name)
    args = str(len(last_feed_var_shape))
    for dim in last_feed_var_shape:
        args += " " + str(dim)
352 353 354 355 356 357 358
    if is_lod:
        args += " 1"
        args += " " + str(len(last_feed_var_lod))
        for dim in last_feed_var_lod:
            args += " " + str(dim)
    else:
        args += " 0"
Y
Yanzhan Yang 已提交
359
    args += " " + str(len(output_var_cache))
Y
Yanzhan Yang 已提交
360
    args += " " + str(sample_step)
Y
Yanzhan Yang 已提交
361 362
    for var_name in output_var_cache.keys():
        args += " " + var_name
Y
Yanzhan Yang 已提交
363 364 365 366
    check_mobile_results(args, False, False)
    check_mobile_results(args, False, True)
    check_mobile_results(args, True, False)
    check_mobile_results(args, True, True)
Y
Yanzhan Yang 已提交
367 368 369

if __name__ == "__main__":
    main()