conv_op.cc 4.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ConvOpLite::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.output);
  CHECK_OR_FALSE(param_.filter);
  // bias is optional.

  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

  CHECK_OR_FALSE(in_dims.size() == 4 || in_dims.size() == 5);

  CHECK_EQ_OR_FALSE(in_dims.size(), filter_dims.size());
  CHECK_OR_FALSE(in_dims.size() - param_.strides.size() == 2U);
  CHECK_EQ_OR_FALSE(filter_dims.size(), 4UL);

  return true;
}

H
HappyAngel 已提交
42 43 44 45 46 47
inline int ConvOutputSize(int input_size,
                          int filter_size,
                          int dilation,
                          int pad_left,
                          int pad_right,
                          int stride) {
Y
Yan Chunwei 已提交
48
  const int dkernel = dilation * (filter_size - 1) + 1;
H
HappyAngel 已提交
49 50
  int output_size =
      (input_size + (pad_left + pad_right) - dkernel) / stride + 1;
Y
Yan Chunwei 已提交
51 52 53 54

  return output_size;
}

W
Wilber 已提交
55 56 57 58 59 60
void UpdatePaddingAndDilation(std::vector<int>* paddings,
                              std::vector<int>* dilations,
                              const std::vector<int>& strides,
                              const std::string padding_algorithm,
                              const lite::DDim data_dims,
                              const lite::DDim& ksize) {
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  // when padding_desc is "VALID" or "SAME"
  if (padding_algorithm == "SAME") {
    for (size_t i = 0; i < strides.size(); ++i) {
      int out_size = (data_dims[i + 2] + strides[i] - 1) / strides[i];
      int pad_sum = std::max(
          (out_size - 1) * strides[i] + ksize[i + 2] - data_dims[i + 2],
          (int64_t)0);
      int pad_0 = pad_sum / 2;
      int pad_1 = pad_sum - pad_0;
      // pad
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
      // dilation
      *(dilations->begin() + i) = 1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto& it : *paddings) {
      it = 0;
    }
  }
}

X
xiaogang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
bool ConvOpLite::SmartInferShape() {
  if (!last_input_shapes.empty()) {
    if (last_input_shapes[0] == param_.x->dims() &&
        last_input_lods[0] == param_.x->lod()) {
      param_.output->Resize(last_output_shapes[0]);
      param_.output->set_lod(last_output_lods[0]);
      return true;
    }
  }

  this->InferShape();

  if (!last_input_shapes.empty()) {
    last_input_shapes.clear();
    last_input_lods.clear();
  }
  last_input_shapes.push_back(param_.x->dims());
  last_input_lods.push_back(param_.x->lod());

  if (!last_output_shapes.empty()) {
    last_output_shapes.clear();
    last_output_lods.clear();
  }
  last_output_shapes.push_back(param_.output->dims());
  last_output_lods.push_back(param_.output->lod());

  return true;
}
Y
Yan Chunwei 已提交
111 112 113 114
bool ConvOpLite::InferShape() const {
  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

H
HappyAngel 已提交
115 116
  UpdatePaddingAndDilation(param_.paddings.get(),
                           param_.dilations.get(),
117 118 119 120
                           param_.strides,
                           padding_algorithm_,
                           in_dims,
                           filter_dims);
Y
Yan Chunwei 已提交
121
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
H
HappyAngel 已提交
122 123
  auto paddings = *param_.paddings;
  auto dilations = *param_.dilations;
Y
Yan Chunwei 已提交
124 125 126
  for (size_t i = 0; i < param_.strides.size(); ++i) {
    output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                          filter_dims[i + 2],
H
HappyAngel 已提交
127 128 129
                                          dilations[i],
                                          paddings[i * 2],
                                          paddings[i * 2 + 1],
Y
Yan Chunwei 已提交
130 131 132 133 134 135
                                          param_.strides[i]));
  }

  // Set output dims
  param_.output->Resize(lite::DDim(output_shape));
  // share LoD
X
xiaogang 已提交
136 137
  param_.output->set_lod(param_.x->lod());

Y
Yan Chunwei 已提交
138 139 140 141 142 143 144 145 146
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(conv2d, paddle::lite::operators::ConvOpLite);
REGISTER_LITE_OP(depthwise_conv2d, paddle::lite::operators::ConvOpLite);