layout_image_compute.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/api/paddle_place.h"
18
#include "lite/backends/opencl/cl_half.h"
19 20 21 22 23 24 25 26 27 28 29 30 31
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/cp_logging.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

32 33 34 35 36
// [NCHW] -> [ImageDefault]
class LayoutComputeBufferChwToImageDefault
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kAny),
                        DATALAYOUT(kImageDefault)> {
37 38 39 40
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
41 42 43 44
    auto& param = Param<param_t>();
    if (param.process_type == 1) {
      kernel_func_name_ = "buffer_to_image2d_with_pre255";
    }
45 46
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
47
        kernel_func_name_, "image/layout_kernel.cl", build_options_);
48 49 50 51
  }

  void Run() override {
    auto& param = Param<param_t>();
52 53 54 55 56 57
    const cl::Buffer* x_data;
    if (param.process_type == 1) {
      x_data = param.x->data<uint8_t, cl::Buffer>();
    } else {
      x_data = param.x->data<float, cl::Buffer>();
    }
58 59
    auto x_dims = param.x->dims();
    auto image_shape = InitImageDimInfoWith(x_dims);
60
    auto* y_data = param.y->mutable_data<half_t, cl::Image2D>(
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        image_shape["width"], image_shape["height"]);
    auto y_dims = param.y->dims();

    // out info
    std::vector<size_t> new_dims = {1, 1, 1, 1};
    for (int tidx = 0; tidx < x_dims.size(); ++tidx) {
      new_dims[4 - x_dims.size() + tidx] = x_dims[tidx];
    }
    const int out_C = new_dims[1];
    const int out_H = new_dims[2];
    const int out_W = new_dims[3];
    const int Stride2 = out_C * out_H * out_W;
    const int Stride1 = out_H * out_W;
    const int Stride0 = out_W;

76 77
    VLOG(4) << "y image_shape(w,h):" << image_shape["width"] << " "
            << image_shape["height"];
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
    VLOG(4) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " "
            << new_dims[1] << " " << new_dims[2] << " " << new_dims[3];
    VLOG(4) << "out_C:" << out_C;
    VLOG(4) << "out_H:" << out_H;
    VLOG(4) << "out_W:" << out_W;
    VLOG(4) << "Stride2:" << Stride2;
    VLOG(4) << "Stride1:" << Stride1;
    VLOG(4) << "Stride0:" << Stride0;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_data);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_H));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_W));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_C));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride0));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride1));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride2));
    CL_CHECK_FATAL(status);

    VLOG(4) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3]
            << " " << (new_dims[0] * new_dims[2]);
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>((new_dims[1] + 3) / 4),
                    static_cast<cl::size_type>(new_dims[3]),
                    static_cast<cl::size_type>(new_dims[0] * new_dims[2])};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
129
    context.cl_wait_list()->emplace(y_data, event_);
130 131 132
  }

  std::string doc() const override {
133
    return "Trans Layout from cl::Buffer(NCHW) to "
134
           "cl::Image2D(ImageDefault/RGBA), Float ---> FP16";
135 136 137 138
  }

 private:
  std::string kernel_func_name_{"buffer_to_image2d"};
139
  std::string build_options_{"-DCL_DTYPE_float"};
140 141 142
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

143 144 145
// [ImageDefault] -> [NCHW]
class LayoutComputeImageDefaultToBufferChw
    : public KernelLite<TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)> {
146 147 148 149
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
150 151 152 153
    auto& param = Param<param_t>();
    if (param.process_type == 1) {
      kernel_func_name_ = "image2d_to_buffer_with_post255";
    }
154 155
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
156
        kernel_func_name_, "image/layout_kernel.cl", build_options_);
157 158 159 160
  }

  void Run() override {
    auto& param = Param<param_t>();
161 162 163 164 165 166
    const cl::Buffer* y_data;
    if (param.process_type == 1) {
      y_data = param.y->mutable_data<uint8_t, cl::Buffer>(TARGET(kOpenCL));
    } else {
      y_data = param.y->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    }
167
    auto* x_data = param.x->data<half_t, cl::Image2D>();
168
    auto x_dims = param.x->dims();
169
    auto y_dims = param.y->dims();
170
    auto x_image_shape = InitImageDimInfoWith(x_dims);
171 172

    std::vector<size_t> new_dims = {1, 1, 1, 1};
173 174
    for (int j = 0; j < x_dims.size(); ++j) {
      new_dims[4 - x_dims.size() + j] = x_dims[j];
175 176
    }

177 178
    VLOG(4) << "x_image_shape(w,h):" << x_image_shape["width"] << " "
            << x_image_shape["height"];
179 180 181 182 183 184
    VLOG(4) << "x_dims[" << x_dims.size() << "D]:" << x_dims[0] << " "
            << x_dims[1] << " " << x_dims[2] << " " << x_dims[3];
    VLOG(4) << "y_dims[" << y_dims.size() << "D]:" << y_dims[0] << " "
            << y_dims[1] << " " << y_dims[2] << " " << y_dims[3];
    VLOG(4) << "new_dims[" << new_dims.size() << "D]:" << new_dims[0] << " "
            << new_dims[1] << " " << new_dims[2] << " " << new_dims[3];
185

186 187 188 189 190 191
    size_t C = new_dims[1];
    size_t in_height = new_dims[2];
    size_t in_width = new_dims[3];
    int size_ch = in_height * in_width;
    int size_block = size_ch * 4;
    int size_batch = size_ch * C;
192 193 194 195 196 197 198 199 200 201

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
202
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_width));
203
    CL_CHECK_FATAL(status);
204
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_height));
205
    CL_CHECK_FATAL(status);
206
    status = kernel.setArg(++arg_idx, *y_data);
207
    CL_CHECK_FATAL(status);
208
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_ch));
209
    CL_CHECK_FATAL(status);
210
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_block));
211
    CL_CHECK_FATAL(status);
212
    status = kernel.setArg(++arg_idx, static_cast<const int>(size_batch));
213
    CL_CHECK_FATAL(status);
214
    status = kernel.setArg(++arg_idx, static_cast<const int>(C));
215
    CL_CHECK_FATAL(status);
216 217
    VLOG(4) << "gws:[3D]" << ((new_dims[1] + 3) / 4) << " " << new_dims[3]
            << " " << (new_dims[0] * new_dims[2]);
218
    auto global_work_size =
219 220 221
        cl::NDRange{static_cast<cl::size_type>((new_dims[1] + 3) / 4),
                    static_cast<cl::size_type>(new_dims[3]),
                    static_cast<cl::size_type>(new_dims[0] * new_dims[2])};
222 223 224 225 226 227 228 229
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
230
    context.cl_wait_list()->emplace(y_data, event_);
231 232 233
  }

  std::string doc() const override {
234
    return "Trans Layout from cl::Image2D(ImageDefault/RGBA) to "
235
           "cl::Buffer(NCHW), FP16 ---> Float";
236 237 238
  }

 private:
239 240
  std::string kernel_func_name_{"image2d_to_buffer"};
  std::string build_options_{"-DCL_DTYPE_float"};
241 242 243
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

244 245 246 247 248
// [NCHW] -> [ImageDW]
class LayoutComputeBufferChwToImage2DNw
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFloat),
                        DATALAYOUT(kImageNW)> {
249 250 251 252 253 254 255 256 257 258 259
 public:
  using param_t = operators::LayoutParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/layout_kernel.cl", build_options_);
  }

  void Run() override {
    auto& param = Param<param_t>();
260
    auto* x_data = param.x->data<float, cl::Buffer>();
261 262
    auto x_dims = param.x->dims();

263 264 265 266 267 268 269 270 271
    CHECK(x_dims.size() == 4) << " Tensor dim is not 4.";
    size_t image_width = x_dims[3] * ((x_dims[0] + 3) / 4);
    size_t image_height = x_dims[1] * x_dims[2];

    auto* y_data =
        param.y->mutable_data<float, cl::Image2D>(image_width, image_height);
    auto y_dims = param.y->dims();

    // out info
272
    std::vector<size_t> new_dims = {1, 1, 1, 1};
273 274
    for (int tidx = 0; tidx < x_dims.size(); ++tidx) {
      new_dims[4 - x_dims.size() + tidx] = x_dims[tidx];
275 276
    }

277 278 279 280
    const int out_N = new_dims[0];
    const int out_C = new_dims[1];
    const int out_H = new_dims[2];
    const int out_W = new_dims[3];
281

282 283 284
    const int Stride2 = out_C * out_H * out_W;
    const int Stride1 = out_H * out_W;
    const int Stride0 = out_W;
285 286 287 288 289 290 291 292 293 294

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_data);
    CL_CHECK_FATAL(status);
295
    status = kernel.setArg(++arg_idx, *y_data);
296
    CL_CHECK_FATAL(status);
297
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_H));
298
    CL_CHECK_FATAL(status);
299
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_W));
300
    CL_CHECK_FATAL(status);
301
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_N));
302
    CL_CHECK_FATAL(status);
303
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride0));
304
    CL_CHECK_FATAL(status);
305
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride1));
306
    CL_CHECK_FATAL(status);
307
    status = kernel.setArg(++arg_idx, static_cast<const int>(Stride2));
308
    CL_CHECK_FATAL(status);
309 310 311

    VLOG(4) << "gws:[3D]" << ((out_N + 3) / 4) << " " << out_W << " "
            << (out_C * out_H);
312
    auto global_work_size =
313 314 315
        cl::NDRange{static_cast<cl::size_type>((out_N + 3) / 4),  // N blocks
                    static_cast<cl::size_type>(out_W),            // w
                    static_cast<cl::size_type>(out_C * out_H)};   // ch
316 317 318 319 320 321 322 323
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
324
    context.cl_wait_list()->emplace(y_data, event_);
325 326 327
  }

  std::string doc() const override {
328
    return "Trans Layout from cl::Buffer(NCHW) to cl::Image2D(ImageDW/CLNW)";
329 330 331
  }

 private:
332 333
  std::string kernel_func_name_{"buffer_to_image2d_nw"};
  std::string build_options_{"-DCL_DTYPE_float "};
334 335 336 337 338 339 340 341
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

342
// [NCHW] -> [ImageDefault]
343 344 345
REGISTER_LITE_KERNEL(
    layout,
    kOpenCL,
346
    kAny,
347 348 349
    kImageDefault,
    paddle::lite::kernels::opencl::LayoutComputeBufferChwToImageDefault,
    NCHW_to_ImageDefault)
350 351
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
352
                                      PRECISION(kAny),
353 354 355
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
356
                                       PRECISION(kAny),
357
                                       DATALAYOUT(kImageDefault))})
358 359
    .Finalize();

360
// [ImageDefault] -> [NCHW]
361 362 363
REGISTER_LITE_KERNEL(
    layout,
    kOpenCL,
364
    kAny,
365
    kNCHW,
366 367
    paddle::lite::kernels::opencl::LayoutComputeImageDefaultToBufferChw,
    ImageDefault_to_NCHW)
368 369
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
370
                                      PRECISION(kAny),
371
                                      DATALAYOUT(kImageDefault))})
372 373
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
374
                                       PRECISION(kAny),
375 376
                                       DATALAYOUT(kNCHW))})
    .Finalize();