layout_compute.h 4.2 KB
Newer Older
J
jackzhang235 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Core>
#include <string>
#include <vector>
#include "lite/backends/x86/math/math_function.h"
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/layout_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace mlu {

template <lite::TargetType Target, typename T>
inline void LayoutTransCompute(const int dim,
                               const lite::Context<Target>& context,
                               const lite::Tensor& in,
                               lite::Tensor* out,
                               const std::vector<int>& axis) {
  switch (dim) {
    case 2:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 2> trans2;
      trans2(context, in, out, axis);
      break;
    case 3:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 3> trans3;
      trans3(context, in, out, axis);
      break;
    case 4:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 4> trans4;
      trans4(context, in, out, axis);
      break;
    default:
      CHECK(0) << ("Unsupport dim in mlu layout");
  }
}

template <PrecisionType Precision>
class LayoutNchwToNhwcCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::LayoutParam;

  void Run() override {
    auto& param = this->template Param<param_t>();
    auto* x = param.x;
    auto* out = param.y;
    out->template mutable_data<float>();
    auto x_dims = param.x->dims().size();
    auto& context = this->ctx_->template As<X86Context>();

    std::vector<int> axis;
    switch (x_dims) {
      case 2:
        axis = {0, 1};
        break;
      case 3:
        axis = {0, 2, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[1]});
        break;
      case 4:
        axis = {0, 2, 3, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[3], out->dims()[1]});
        break;
      default:
        CHECK(0) << "Unsupport dim in mlu layout nchw to nhwc";
    }

J
jackzhang235 已提交
89
    LayoutTransCompute<lite::TargetType::kX86, float>(
J
jackzhang235 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        x_dims, context, *x, out, axis);
  }

  std::string doc() const override {
    return "Mlu layout transform nchw to nhwc";
  }
};

template <PrecisionType Precision>
class LayoutNhwcToNchwCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::LayoutParam;

  void Run() override {
    auto& param = this->template Param<param_t>();
    auto* x = param.x;
    auto* out = param.y;
    out->template mutable_data<float>();
    auto x_dims = param.x->dims().size();
    auto& context = this->ctx_->template As<X86Context>();

    std::vector<int> axis;
    switch (x_dims) {
      case 2:
        axis = {0, 1};
        break;
      case 3:
        axis = {0, 2, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[1]});
        break;
      case 4:
        axis = {0, 3, 1, 2};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[3], out->dims()[1], out->dims()[2]});
        break;
      default:
        CHECK(0) << "Unsupport dim in mlu layout nhwc to nchw";
    }

J
jackzhang235 已提交
131
    LayoutTransCompute<lite::TargetType::kX86, float>(
J
jackzhang235 已提交
132 133 134 135 136 137 138 139 140 141 142 143
        x_dims, context, *x, out, axis);
  }

  std::string doc() const override {
    return "Mlu layout transform nhwc to nchw";
  }
};

}  // namespace mlu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle