test_elementwise_add_op.cpp 5.3 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

E
eclipsess 已提交
15 16
#pragma once
#include "../test_include.h"
E
eclipsess 已提交
17
#include "operators/elementwise_add_op.h"
E
eclipsess 已提交
18 19

namespace paddle_mobile {
E
eclipsess 已提交
20 21
namespace framework {

22 23 24
template <typename Dtype>
class TestElementwiseAddOp {
 public:
25 26 27 28 29
  explicit TestElementwiseAddOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
E
eclipsess 已提交
30 31
    }

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (int i = 0; i < blocks.size(); ++i) {
      std::shared_ptr<BlockDesc> block_desc = blocks[i];
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (int j = 0; j < ops.size(); ++j) {
        std::shared_ptr<OpDesc> op = ops[j];
        if (op->Type() == "elementwise_add" &&
            op->Input("X")[0] == "batch_norm_2.tmp_2") {
          DLOG << " elementwise_add attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " Input X is : " << op->Input("X")[0];
          DLOG << " Input Y is : " << op->Input("Y")[0];
          DLOG << " Output Out is : " << op->Output("Out")[0];
          Attribute axis_attr = op->GetAttrMap().at("axis");
          int axis = axis_attr.Get<int>();
          DLOG << " Attr axis is : " << axis;

          std::shared_ptr<operators::ElementwiseAddOp<Dtype, float>> add =
              std::make_shared<operators::ElementwiseAddOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(add);
E
eclipsess 已提交
58
        }
59 60 61 62
      }
    }
  }

63
  std::shared_ptr<Tensor> predict_add(const Tensor &t1, const Tensor &t2) {
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    // feed
    auto scope = program_.scope;
    Variable *x_feed_value = scope->Var("batch_norm_2.tmp_2");
    auto tensor_x = x_feed_value->GetMutable<Tensor>();
    tensor_x->ShareDataWith(t1);

    Variable *y_feed_value = scope->Var("batch_norm_0.tmp_3");
    auto tensor_y = y_feed_value->GetMutable<Tensor>();
    tensor_y->ShareDataWith(t2);

    Variable *con_output = scope->Var("elementwise_add_0.tmp_0");
    auto *output_tensor = con_output->GetMutable<Tensor>();
    output_tensor->mutable_data<float>({1, 3, 224, 224});
    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict_add(t1, t2, 0);
    return out_tensor;
  }

87
 private:
88 89 90 91 92 93 94 95 96 97 98 99 100 101
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict_add(const Tensor &t1, const Tensor &t2, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
E
eclipsess 已提交
102
    }
103
  }
E
eclipsess 已提交
104 105 106
};

template class TestElementwiseAddOp<CPU>;
107 108
}  // namespace framework
}  // namespace paddle_mobile
E
eclipsess 已提交
109
int main() {
110 111 112 113
  DLOG << "----------**********----------";
  DLOG << "begin to run ElementAddOp Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
  auto program =
E
eclipsess 已提交
114
      loader.Load(std::string("../models/"
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
                              "image_classification_resnet.inference.model"));

  /// input x (1,3,224,224)
  paddle_mobile::framework::Tensor inputx;
  SetupTensor<float>(&inputx, {1, 3, 224, 224}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx_ptr = inputx.data<float>();
  /// input y (224,)
  paddle_mobile::framework::Tensor inputy;
  SetupTensor<float>(&inputy, {224}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputy_ptr = inputy.data<float>();

  paddle_mobile::framework::TestElementwiseAddOp<paddle_mobile::CPU>
      testElementwiseAddOp(program);

  auto output_add = testElementwiseAddOp.predict_add(inputx, inputy);
  auto *output_add_ptr = output_add->data<float>();
  //            for (int j = 0; j < output_add->numel(); ++j) {
  //                DLOG << "value of output: " << output_add_ptr[j];
  //            }

  /// output (1,3,224,224)
  DLOG << "output memory size : " << output_add->memory_size();
  DLOG << "output numel : " << output_add->numel();

  DLOG << inputx_ptr[226] << " + " << inputy_ptr[2] << " = "
       << output_add_ptr[226];
  return 0;
E
eclipsess 已提交
144
}