fetch_kernel.cpp 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/kernel/fetch_kernel.h"
namespace paddle_mobile {
namespace operators {

template <>
19
bool FetchKernel<FPGA, float>::Init(FetchParam<FPGA> *param) {
20 21 22 23 24 25 26 27
  auto input = const_cast<Tensor *>(param->InputX());
  auto output = param->Out();
  if (input->type() == typeid(float)) {
    return true;
  }
  output->init(typeid(float));
  output->Resize(input->dims());
  fpga::format_fp32_ofm(output);
qnqinan's avatar
qnqinan 已提交
28 29 30 31 32 33 34

  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};

  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.input_layout_type = fpga::LAYOUT_CHW;
  args.output_layout_type = fpga::LAYOUT_HWC;
35
  args.image.address = input->data<half>();
36
  args.image.channels = (uint32_t)(input->fpga_data_num);
37 38 39 40 41 42 43 44 45 46
  args.image.height = 1;
  args.image.width = 1;
  args.image.pad_height = 0;
  args.image.pad_width = 0;
  args.output.address = output->data<float>();
  args.output.scale_address = output->scale;
  param->fpga_bypass_args = args;

  return true;
}
47 48 49 50 51 52 53 54 55 56
void dealign(float *src, float *dst, int input_c, int input_h, int input_w) {
  int alignCW = paddle_mobile::fpga::align_to_x(input_c * input_w, 16);
  int dealignCW = input_c * input_w;
  for (int h = 0; h < input_h; ++h) {
    auto input_offset = h * alignCW;
    auto output_offset = h * dealignCW;
    memcpy((dst + output_offset), (src + input_offset),
           dealignCW * sizeof(float));
  }
}
57 58
template <>
void FetchKernel<FPGA, float>::Compute(const FetchParam<FPGA> &param) {
J
jameswu2014 已提交
59
  auto input = const_cast<Tensor *>(param.InputX());
60
  if (input->type() == typeid(float)) {
Z
zhangyang0701 已提交
61 62
    auto output = param.Out();
    output->ShareDataWith(*input);
63 64
    return;
  }
qnqinan's avatar
qnqinan 已提交
65

66 67 68
  fpga::BypassArgs args = param.fpga_bypass_args;
  auto input_address = (input->data<half>());
  args.image.address = static_cast<void *>(input_address);
qnqinan's avatar
qnqinan 已提交
69 70 71 72 73 74 75 76 77 78 79 80
  float *outdata_ptr =
      reinterpret_cast<float *>(param.fpga_bypass_args.output.address);
  const int num_th = 32;
  if ((param.Out()->fpga_data_num) < num_th) {
    fpga::fpga_invalidate(input_address, (input->fpga_data_num) * sizeof(half));

    for (int idx = 0; idx < product(input->dims()); ++idx) {
      outdata_ptr[idx] = fpga::fp16_2_fp32(input_address[idx]);
    }
    return;
  }

81
  fpga::PerformBypass(args);
82 83 84
  auto outC = param.Out()->dims()[1];
  auto outH = param.Out()->dims()[2];
  auto outW = param.Out()->dims()[3];
qnqinan's avatar
qnqinan 已提交
85

86 87
  fpga::fpga_invalidate(param.fpga_bypass_args.output.address,
                        param.Out()->fpga_data_num * sizeof(float));
J
jameswu2014 已提交
88 89 90 91 92 93 94

  if (param.Out()->fpga_data_num != product(input->dims())) {
    float *data_tmp =
        reinterpret_cast<float *>(malloc(outC * outH * outW * sizeof(float)));
    dealign(outdata_ptr, data_tmp, outC, outH, outW);
    memcpy(outdata_ptr, data_tmp, outC * outH * outW * sizeof(float));
    free(data_tmp);
95
  }
96 97
}

98
template class FetchKernel<FPGA, float>;
99 100 101

}  // namespace operators
}  // namespace paddle_mobile