gru_pe.hpp 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

C
chonwhite 已提交
17 18 19
#include "lite/backends/arm/math/sgemm.h"
#include "lite/backends/fpga/KD/pe.hpp"
#include "lite/backends/fpga/KD/pe_params.hpp"
20 21 22 23 24 25
#include "lite/backends/fpga/KD/pes/elementwise_add_pe.hpp"
#include "lite/backends/fpga/KD/pes/elementwise_mul_pe.hpp"
#include "lite/backends/fpga/KD/pes/fully_connected_pe.hpp"
#include "lite/backends/fpga/KD/pes/relu_pe.hpp"

#include "lite/api/paddle_place.h"
C
chonwhite 已提交
26
#include "lite/backends/arm/math/funcs.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include "lite/core/type_system.h"

namespace paddle {
namespace zynqmp {

struct GRUTensors {
  Tensor* gate;
  Tensor* pre_output;
  Tensor* output;
  Tensor* reset_output;
};

class GRUPE : public PE {
 public:
  bool init() {
    // Tensor* output = param_.output;
    // output->setAligned(true);
    // output->setDataLocation(Device);
    return true;
  }

  void apply() {
    auto hidden = param_.hidden;
    // auto hidden_dims = hidden->dims();
    int frame_size = hidden->shape().channel();
C
chonwhite 已提交
52

53
    zynqmp::Shape hidden_shape{zynqmp::NCHW, {1, frame_size, 1, 1}};
C
chonwhite 已提交
54 55
    float16* prev_hidden_data =
        prev_hidden_.mutableData<float16>(zynqmp::FP16, hidden_shape);
56 57 58 59 60 61 62 63
    // set previous hidden data to 0;
    memset(prev_hidden_data, 0, hidden_shape.numel() * sizeof(float16));

    // copy 2/3 weight from param.weight;
    zynqmp::Shape weight_shape{zynqmp::NC, {frame_size, frame_size * 2}};
    float* weight_data = weight_.mutableData<float>(zynqmp::FP32, weight_shape);
    memset(weight_data, 0, weight_shape.numel() * sizeof(float));
    weight_data = weight_.mutableData<float>(zynqmp::FP32, weight_shape);
C
chonwhite 已提交
64 65 66
    memcpy(weight_data,
           param_.weight->data<float>(),
           weight_shape.numel() * sizeof(float));
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    Shape gate_shape(zynqmp::NC, {1, frame_size * 2});
    gate_ping_.mutableData<void>(FP32, gate_shape);
    gate_pong_.mutableData<void>(FP16, gate_shape);

    zynqmp::FullyConnectedParam& pre_out_param = pre_out_pe_.param();
    pre_out_param.input = &prev_hidden_;
    pre_out_param.output = &gate_pong_;
    pre_out_param.filter = &weight_;
    pre_out_param.bias = &gate_ping_;
    pre_out_pe_.init();
    pre_out_pe_.apply();

    // // ============= C
    // ElementwiseAddParam& bias_add_param = bias_ew_pe_.param();
    // bias_add_param.inputs = {&pre_output_, &pre_input_};
    // bias_add_param.output = &pre_input_;
    // bias_ew_pe_.init();
    // bias_ew_pe_.apply();
    // // ====================

    // Shape state_weight_shape(NC,{frame_size, frame_size});
C
chonwhite 已提交
89 90 91
    // float* state_weight_data = state_weight_.mutableData<float>(FP32,
    // state_weight_shape);
    // memcpy(state_weight_data, weight_data + 2 * frame_size * frame_size,
92 93 94 95 96 97 98 99
    //   state_weight_shape.numel() * sizeof(float));
    // FullyConnectedParam& reset_out_param = reset_out_pe_.param();
    // reset_out_param.input = &prev_hidden;
    // reset_out_param.output = &gate_ping;
    // reset_out_param.filter = &state_weight_;

    // // ============== unit reset;
    // update_gate_.mutableData<void>(FP16, pre_input_shape);
C
chonwhite 已提交
100
    // InputParam& relu_param = update_relu_pe_.param();
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    // relu_param.input = &tempTensor;
    // relu_param.output = &update_gate_;
    // update_relu_pe_.init();
    // update_relu_pe_.apply();

    reset_gate_.mutableData<void>(FP16, hidden_shape);
    prev_hidden_.mutableData<void>(FP16, hidden_shape);
    reset_hidden_.mutableData<void>(FP16, hidden_shape);
    // InputParam& reset_param = reset_relu_pe_.param();
    // reset_param.input = &tempTensor;
    // reset_param.output = &reset_gate_;
    // reset_relu_pe_.init();
    // reset_relu_pe_.apply();

    // float16* prev_data = prev_.mutableData<float16>(FP16, pre_input_shape);
C
chonwhite 已提交
116 117
    // memset(prev_data, 0, (pre_input_shape.numel() + 32) * sizeof(float16));
    // // TODO
118 119 120 121 122 123 124
    // reset_hidden_prev_.mutableData<float16>(FP16, pre_input_shape);

    ElementwiseMulParam& mul_param = mul_pe_.param();
    mul_param.inputs = {&reset_gate_, &prev_hidden_};
    mul_param.output = &reset_hidden_;
    mul_pe_.init();
    mul_pe_.apply();
C
chonwhite 已提交
125
    // ==============
126 127
  }

C
chonwhite 已提交
128
  bool dispatch() { return true; }
129

C
chonwhite 已提交
130 131 132 133
  void gru_unit_reset_act(const lite_api::ActivationType active_gate,
                          GRUTensors& value,  // NOLINT
                          int frame_size,
                          int batch_size) {
134 135 136 137 138 139 140 141 142 143 144 145
    int stride_update = 3 * frame_size;
    int stride_cell_state = 3 * frame_size;
    int stride_hidden_prev = frame_size;
    int stride_hidden = frame_size;

    // Tensor* gate = value.gate;
    // value.gate->saveToFile("value_input.txt");

    float* update_gate_data = gate_ping_.data<float>();
    float* reset_gate_data = update_gate_data + frame_size;

    for (int b = 0; b < batch_size; b++) {
C
chonwhite 已提交
146 147
      // memcpy(tempTensor.data<void>(), reset_gate_data, gate->shape().numel()
      // * sizeof(float));
148 149 150
      // tempTensor.flush();

      Tensor tmp;
C
chonwhite 已提交
151
      Shape s(NC, {1, frame_size});
152 153 154 155
      float* tmp_data = tmp.mutableData<float>(FP32, s);

      for (int i = 0; i < frame_size; i++) {
        // f(x) = x / (1 + abs(x))?
C
chonwhite 已提交
156 157 158 159 160 161
        update_gate_data[i] =
            lite::arm::math::active_f32<lite_api::ActivationType::kSigmoid>(
                update_gate_data[i]);
        reset_gate_data[i] =
            lite::arm::math::active_f32<lite_api::ActivationType::kSigmoid>(
                reset_gate_data[i]);
162 163 164 165 166 167 168 169 170
      }
      memcpy(tmp_data, reset_gate_data, frame_size * sizeof(float));
      tmp.flush();
      reset_gate_.copyFrom(&tmp);

      // reset_gate_.copyFrom(&tempTensor);
      Tensor* hidden_prev = value.pre_output;
      if (hidden_prev) {
        // memcpy(prev_data, )
C
chonwhite 已提交
171
        // TODO(chonwhite): change to pre_out;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        prev_hidden_.copyFrom(value.pre_output);
        prev_hidden_.saveToFile("prev_.txt");
      }

      // // 4.0 reset_date * hidden_prev;
      // // reset_hidden_prev[i] = reset_gate[i] * prev;
      mul_pe_.dispatch();
      reset_hidden_.saveToFile("reset_hidden_.txt");
      update_gate_data += stride_update;
      reset_gate_data += stride_update;

      // reset_hidden_prev += stride_hidden;// TODO
    }
  }

C
chonwhite 已提交
187 188 189 190 191
  void gru_unit_out_act(const lite_api::ActivationType active_node,
                        bool origin_mode,
                        GRUTensors& value,  // NOLINT
                        int frame_size,
                        int batch_size) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    // int stride_update = 3 * frame_size;
    // int stride_cell_state = 3 * frame_size;
    // int stride_hidden_prev = frame_size;
    // int stride_hidden = frame_size;

    // Tensor* hidden = value.output_value;
    // float* hidden_prev = nullptr;
    // if (hidden) {
    //   hidden_prev = hidden->data<float>();
    // }

    // float* cell_state = value.gate->data<float>() + 2 * frame_size;

    // float* updata_gate = value.gate->data<float>();
    // // float* reset_gate_data = update_gate_data + frame_size;

    // float prev = 0.0f;
    // for (int b = 0; b < batch_size; ++b) {
    //   if (origin_mode) {
    //     // for (int i = 0; i < frame_size; i++) {
    //     //   float prev = 0;
    //     //   if (hidden_prev) {
    //     //     prev = hidden_prev[i];
    //     //   }
C
chonwhite 已提交
216 217
    //     //   cell_state[i] =
    //     lite::arm::math::active_f32<kSigmoid>(cell_state[i]);
218
    //     //   hidden[i] =
C
chonwhite 已提交
219 220
    //     //       cell_state[i] * (1.f - updata_gate[i]) + updata_gate[i] *
    //     prev;
221 222 223
    //     // }
    //   } else {
    //     for (int i = 0; i < frame_size; ++i) {
C
chonwhite 已提交
224 225
    //       cell_state[i] =
    //       lite::arm::math::active_f32<lite_api::ActivationType::kRelu>(cell_state[i]);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    //       if (hidden_prev) {
    //        prev = hidden_prev[i];
    //       }
    //       float hidden_value =
    //         prev * (1.f - updata_gate[i]) + updata_gate[i] * cell_state[i];
    //       hidden_prev[i] = hidden_value;
    //       std::cout << "hidden_value::" << hidden_value << std::endl;
    //     }
    //   }
    //   updata_gate += stride_update;
    //   cell_state += stride_cell_state;
    //   hidden_prev += frame_size;
    // }
  }

C
chonwhite 已提交
241
  void copy_input(GRUTensors& value) {  // NOLINT
242 243 244
    float max = find_max(*(value.gate));
    gate_ping_.mutableData<void>(FP32, value.gate->shape());
    gate_ping_.copyFrom(value.gate);
C
chonwhite 已提交
245
    // update input pointer?
246 247 248 249 250 251 252 253 254 255 256 257 258 259

    // gate_.readFromFile("input/in.txt");
    // // pre_input_.saveToFile("pppp_in.txt");
    // gate_.scale()[0] = max / 127;
    // gate_.scale()[1] = 127 / max;
    // gate_.printScale("pre_input_");

    // gate_.saveToFile("pre_input_.txt");

    // pre_out_pe_.dispatch();

    // pre_output_.saveToFile("pp_out.txt");
  }

C
chonwhite 已提交
260 261 262 263 264 265
  void GRUCOmpute(GRUTensors& value,  // NOLINT
                  int frame_size,
                  int batch_size,
                  const lite_api::ActivationType active_node,
                  const lite_api::ActivationType active_gate,
                  bool origin_mode) {
266 267 268 269 270 271 272 273 274 275 276 277 278 279
    copy_input(value);

    if (value.pre_output) {
      // copy by batch;
      pre_out_pe_.dispatch();
      gate_ping_.copyFrom(&gate_pong_);
    }

    gru_unit_reset_act(active_gate, value, frame_size, batch_size);

    // if (value.pre_output) {
    //   // state weight;
    //   reset_out_pe_.dispatch();
    // }
C
chonwhite 已提交
280 281
    // gru_unit_out_act(active_node, origin_mode, value, frame_size,
    // batch_size);
282 283 284 285 286 287 288 289 290 291 292 293
  }

  GRUParam& param() { return param_; }

  // Tensor* preOutput() {
  //   return &pre_output_;
  // }

  // Tensor* gate() {
  //   return &gate_;
  // }

C
chonwhite 已提交
294
  Tensor* updateGate() { return &update_gate_; }
295

C
chonwhite 已提交
296
  Tensor* resetGate() { return &reset_gate_; }
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

 private:
  GRUParam param_;
  zynqmp::Tensor gate_ping_;
  zynqmp::Tensor gate_pong_;
  zynqmp::Tensor bias_;
  zynqmp::Tensor weight_;
  zynqmp::Tensor state_weight_;
  // =================================
  zynqmp::Tensor update_gate_;
  zynqmp::Tensor reset_gate_;
  zynqmp::Tensor cell_state_;
  zynqmp::Tensor prev_hidden_;
  zynqmp::Tensor reset_hidden_;

  Tensor tempTensor;
  // =================================

  ReluPE update_relu_pe_;
  ReluPE reset_relu_pe_;
  zynqmp::ElementwiseMulPE mul_pe_;
  zynqmp::FullyConnectedPE pre_out_pe_;
  zynqmp::FullyConnectedPE reset_out_pe_;

  zynqmp::ElementwiseAddPE bias_ew_pe_;
};

}  // namespace zynqmp
}  // namespace paddle