tensor.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/mlu/bridges/tensor.h"
#include <glog/logging.h>
#include <algorithm>
#include <climits>
#include <vector>

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

MLUTensor::MLUTensor(const std::vector<int64_t>& shape,
                     cnmlTensorType_t tensor_type,
                     cnmlDataOrder_t data_order,
                     cnmlDataType_t mlu_dtype)
    : mlu_tensor_(nullptr), tensor_type_(tensor_type), mlu_ptr_(nullptr) {
  std::vector<int> int_shape;
  for (auto i : shape) {
    if (i <= INT_MAX) {
      int_shape.push_back(i);
    } else {
      LOG(FATAL) << "Shape size is beyond the limitation of MLUTensor!";
    }
  }
  remember(int_shape, tensor_type, mlu_dtype, data_order);
}

void MLUTensor::remember(const std::vector<int>& shape,
                         cnmlTensorType_t tensor_type,
                         cnmlDataType_t mlu_dtype,
                         cnmlDataOrder_t shape_order) {
  tensor_type_ = tensor_type;
  mlu_dtype_ = mlu_dtype;

  int size = 4;
  if (shape.size() > 4 || shape_order == CNML_ARRAY) {
    size = shape.size();
  }
  shape_.resize(size);
  if (shape.size() <= 4) {
    switch (shape_order) {
      case CNML_NCHW:
        shape_[0] = shape.size() > 0 ? shape[0] : 1;
        shape_[3] = shape.size() > 1 ? shape[1] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        break;
      case CNML_NCWH:
        shape_[0] = shape.size() > 0 ? shape[0] : 1;
        shape_[3] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        break;
      case CNML_NHWC:
        shape_[0] = shape.size() > 0 ? shape[0] : 1;
        shape_[3] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 2 ? shape[2] : 1;
        break;
      case CNML_NHCW:
        shape_[0] = shape.size() > 0 ? shape[0] : 1;
        shape_[3] = shape.size() > 2 ? shape[2] : 1;
        shape_[1] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        break;
      case CNML_NWCH:
        shape_[0] = shape.size() > 0 ? shape[0] : 1;
        shape_[3] = shape.size() > 2 ? shape[2] : 1;
        shape_[1] = shape.size() > 3 ? shape[3] : 1;
        shape_[2] = shape.size() > 1 ? shape[1] : 1;
        break;
      case CNML_NWHC:
        shape_[0] = shape.size() > 0 ? shape[0] : 1;
        shape_[3] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        shape_[2] = shape.size() > 1 ? shape[1] : 1;
        break;
      case CNML_CNHW:
        shape_[0] = shape.size() > 1 ? shape[1] : 1;
        shape_[3] = shape.size() > 0 ? shape[0] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        break;
      case CNML_CNWH:
        shape_[0] = shape.size() > 1 ? shape[1] : 1;
        shape_[3] = shape.size() > 0 ? shape[0] : 1;
        shape_[1] = shape.size() > 3 ? shape[3] : 1;
        shape_[2] = shape.size() > 2 ? shape[2] : 1;
        break;
      case CNML_CHWN:
        shape_[0] = shape.size() > 3 ? shape[3] : 1;
        shape_[3] = shape.size() > 0 ? shape[0] : 1;
        shape_[1] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 2 ? shape[2] : 1;
        break;
      case CNML_CHNW:
        shape_[0] = shape.size() > 2 ? shape[2] : 1;
        shape_[3] = shape.size() > 0 ? shape[0] : 1;
        shape_[1] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        break;
      case CNML_CWNH:
        shape_[0] = shape.size() > 2 ? shape[2] : 1;
        shape_[3] = shape.size() > 0 ? shape[0] : 1;
        shape_[1] = shape.size() > 3 ? shape[3] : 1;
        shape_[2] = shape.size() > 1 ? shape[1] : 1;
        break;
      case CNML_CWHN:
        shape_[0] = shape.size() > 3 ? shape[3] : 1;
        shape_[3] = shape.size() > 0 ? shape[0] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        shape_[2] = shape.size() > 1 ? shape[1] : 1;
        break;
      case CNML_HNCW:
        shape_[0] = shape.size() > 1 ? shape[1] : 1;
        shape_[3] = shape.size() > 2 ? shape[2] : 1;
        shape_[1] = shape.size() > 0 ? shape[0] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        break;
      case CNML_HNWC:
        shape_[0] = shape.size() > 1 ? shape[1] : 1;
        shape_[3] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 0 ? shape[0] : 1;
        shape_[2] = shape.size() > 2 ? shape[2] : 1;
        break;
      case CNML_HCWN:
        shape_[0] = shape.size() > 3 ? shape[3] : 1;
        shape_[3] = shape.size() > 1 ? shape[1] : 1;
        shape_[1] = shape.size() > 0 ? shape[0] : 1;
        shape_[2] = shape.size() > 2 ? shape[2] : 1;
        break;
      case CNML_HCNW:
        shape_[0] = shape.size() > 2 ? shape[2] : 1;
        shape_[3] = shape.size() > 1 ? shape[1] : 1;
        shape_[1] = shape.size() > 0 ? shape[0] : 1;
        shape_[2] = shape.size() > 3 ? shape[3] : 1;
        break;
      case CNML_HWNC:
        shape_[0] = shape.size() > 2 ? shape[2] : 1;
        shape_[3] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 0 ? shape[0] : 1;
        shape_[2] = shape.size() > 1 ? shape[1] : 1;
        break;
      case CNML_HWCN:
        shape_[0] = shape.size() > 3 ? shape[3] : 1;
        shape_[3] = shape.size() > 2 ? shape[2] : 1;
        shape_[1] = shape.size() > 0 ? shape[0] : 1;
        shape_[2] = shape.size() > 1 ? shape[1] : 1;
        break;
      case CNML_WNCH:
        shape_[0] = shape.size() > 1 ? shape[1] : 1;
        shape_[3] = shape.size() > 2 ? shape[2] : 1;
        shape_[1] = shape.size() > 3 ? shape[3] : 1;
        shape_[2] = shape.size() > 0 ? shape[0] : 1;
        break;
      case CNML_WNHC:
        shape_[0] = shape.size() > 1 ? shape[1] : 1;
        shape_[3] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        shape_[2] = shape.size() > 0 ? shape[0] : 1;
        break;
      case CNML_WCHN:
        shape_[0] = shape.size() > 3 ? shape[3] : 1;
        shape_[3] = shape.size() > 1 ? shape[1] : 1;
        shape_[1] = shape.size() > 2 ? shape[2] : 1;
        shape_[2] = shape.size() > 0 ? shape[0] : 1;
        break;
      case CNML_WCNH:
        shape_[0] = shape.size() > 2 ? shape[2] : 1;
        shape_[3] = shape.size() > 1 ? shape[1] : 1;
        shape_[1] = shape.size() > 3 ? shape[3] : 1;
        shape_[2] = shape.size() > 0 ? shape[0] : 1;
        break;
      case CNML_WHNC:
        shape_[0] = shape.size() > 2 ? shape[2] : 1;
        shape_[3] = shape.size() > 3 ? shape[3] : 1;
        shape_[1] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 0 ? shape[0] : 1;
        break;
      case CNML_WHCN:
        shape_[0] = shape.size() > 3 ? shape[3] : 1;
        shape_[3] = shape.size() > 2 ? shape[2] : 1;
        shape_[1] = shape.size() > 1 ? shape[1] : 1;
        shape_[2] = shape.size() > 0 ? shape[0] : 1;
        break;
      case CNML_ARRAY:
        shape_ = shape;
        break;
      default:
        LOG(FATAL) << "Unsupported mluDataOrder! " << int(shape_order);
        break;
    }
  } else {
    switch (shape_order) {
      case CNML_NCDHW:
        shape_[0] = shape[0];
        shape_[4] = shape[1];
        shape_[1] = shape[2];
        shape_[2] = shape[3];
        shape_[3] = shape[4];
        break;
      case CNML_NDHWC:
        shape_[0] = shape[0];
        shape_[4] = shape[4];
        shape_[1] = shape[1];
        shape_[2] = shape[2];
        shape_[3] = shape[3];
        break;
      case CNML_DHWCN:
        shape_[0] = shape[4];
        shape_[4] = shape[3];
        shape_[1] = shape[0];
        shape_[2] = shape[1];
        shape_[3] = shape[2];
        break;
      case CNML_ARRAY:
        shape_ = shape;
        break;
      default:
        shape_[0] = shape[0];
        shape_[4] = shape[1];
        shape_[1] = shape[2];
        shape_[2] = shape[3];
        shape_[3] = shape[4];
        break;
    }
  }
  dim_ = shape_.size();
}

void MLUTensor::Create() {
  if (mlu_tensor_ == nullptr) {
    CNML_CALL(cnmlCreateTensor_V2(&mlu_tensor_, tensor_type_));
    std::vector<int> dim_shape(shape_);
    int* dim_strides = nullptr;
    CNML_CALL(cnmlSetTensorShape_V2(
        mlu_tensor_, dim_, dim_shape.data(), dim_strides));
    CNML_CALL(cnmlSetTensorDataType(mlu_tensor_, mlu_dtype_));
  }
}

cnmlTensor_t MLUTensor::mlu_tensor() {
  Create();
  return mlu_tensor_;
}

MLUTensor::~MLUTensor() {
  if (mlu_tensor_ != nullptr) {
    CNML_CALL(cnmlDestroyTensor(&mlu_tensor_));
    mlu_tensor_ = nullptr;
  }
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle