dequantize_kernel.cpp 2.4 KB
Newer Older
T
Tian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef DEQUANT_OP
16

17
#include "operators/kernel/dequantize_kernel.h"
T
Tian 已提交
18

H
Refine  
hjchen2 已提交
19 20 21 22
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif

23 24 25
namespace paddle_mobile {
namespace operators {

26
template <>
27 28 29 30
bool DequantizeKernel<CPU, float>::Init(DequantizeParam<CPU> *param) {
  return true;
}

31
template <>
32 33
void DequantizeKernel<CPU, float>::Compute(
    const DequantizeParam<CPU> &param) const {
34
  const Tensor *input = param.input_;
35
  Tensor *output = param.out_;
36 37 38 39
  float activation_scale = param.activation_scale_->data<float>()[0];
  float weight_scale = param.weight_scale_;
  const int32_t *x = input->data<const int32_t>();
  float *y = output->mutable_data<float>();
H
Refine  
hjchen2 已提交
40
  size_t size = output->numel();
41 42
  // float scale = 1.f / (activation_scale * weight_scale);
  float scale = activation_scale / weight_scale;
H
Refine  
hjchen2 已提交
43 44 45 46
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  float32x4_t s = vdupq_n_f32(scale);
47 48

  #pragma omp parallel for
H
Refine  
hjchen2 已提交
49
  for (size_t i = 0; i < loop; ++i) {
50 51 52 53 54 55
    const int32_t *local_x = x + (i << 4);
    float *local_y = y + (i << 4);
    int32x4_t r0 = vld1q_s32(local_x);
    int32x4_t r1 = vld1q_s32(local_x + 4);
    int32x4_t r2 = vld1q_s32(local_x + 8);
    int32x4_t r3 = vld1q_s32(local_x + 12);
H
Refine  
hjchen2 已提交
56 57 58 59 60 61 62 63
    float32x4_t f0 = vcvtq_f32_s32(r0);
    float32x4_t f1 = vcvtq_f32_s32(r1);
    float32x4_t f2 = vcvtq_f32_s32(r2);
    float32x4_t f3 = vcvtq_f32_s32(r3);
    f0 = vmulq_f32(f0, s);
    f1 = vmulq_f32(f1, s);
    f2 = vmulq_f32(f2, s);
    f3 = vmulq_f32(f3, s);
64 65 66 67
    vst1q_f32(local_y, f0);
    vst1q_f32(local_y + 4, f1);
    vst1q_f32(local_y + 8, f2);
    vst1q_f32(local_y + 12, f3);
H
Refine  
hjchen2 已提交
68 69
  }
  size = remain;
70 71
  x += (loop << 4);
  y += (loop << 4);
H
Refine  
hjchen2 已提交
72 73 74
#endif
  for (size_t i = 0; i < size; ++i) {
    y[i] = x[i] * scale;
75
  }
76 77 78
}

}  // namespace operators
79
}  // namespace paddle_mobile
80 81

#endif