conv_func.h 3.4 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#if __ARM_NEON
#include <arm_neon.h>
#endif

#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace operators {
namespace math {

using framework::DDim;
using framework::Tensor;

inline int ConvOutputSize(int input_size, int filter_size, int dilation,
                          int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  return output_size;
}

inline void expand_bias(Tensor &bias, int axis, const DDim &dDim) {
  auto bias_ptr = bias.data<float>();
  const DDim bias_ddim = bias.dims();
  PADDLE_MOBILE_ENFORCE(bias.dims().size() == 1,
                        "the bias tensor's dims size != 1")
  DDim outer_ddim = paddle_mobile::framework::slice_ddim(dDim, 0, axis + 1);
  DDim inner_ddim =
L
liuruilong 已提交
45
      paddle_mobile::framework::slice_ddim(dDim, axis + 1, dDim.size());
L
liuruilong 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  int outer_size = paddle_mobile::framework::product(outer_ddim);
  int inner_size = paddle_mobile::framework::product(inner_ddim);
  bias.Resize(dDim);
  auto new_ptr = bias.mutable_data<float>();
  int axis_size = dDim[axis];

#if __ARM_NEON
  for (int i = 0; i < outer_size; ++i) {
    int inner_num = inner_size >> 4;
    int remain = inner_size - (inner_num << 4);
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (; inner_num > 0; inner_num--) {
      float32x4_t v_newptr1 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr2 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr3 = vdupq_n_f32(v_bias);
      float32x4_t v_newptr4 = vdupq_n_f32(v_bias);
      vst1q_f32(new_ptr, v_newptr1);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr2);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr3);
      new_ptr += 4;
      vst1q_f32(new_ptr, v_newptr4);
      new_ptr += 4;
    }
    for (; remain > 0; remain--) {
      *new_ptr = v_bias;
      new_ptr++;
    }
  }
#else
  for (int i = 0; i < outer_size; ++i) {
    float v_bias = bias_ptr[i * axis_size / outer_size];
    for (int j = 0; j < inner_size; ++j) {
      new_ptr[i * inner_size + j] = v_bias;
    }
  }
#endif
}

inline bool IsExpand(const std::vector<int64_t> &filter_dim,
                     const std::vector<int> &strides,
                     const std::vector<int> &paddings,
                     const std::vector<int> &dilations) {
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }

  return !(filter_1 && strides_1 && padding_0 && dilation_1);
}

L
liuruilong 已提交
101 102 103
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile