mul_buffer_compute.cc 4.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
17 18
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
19
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class MulCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::MulParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
36 37 38 39
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/mat_mul_kernel.cl",
                                    build_options_,
                                    time_stamp_);
Y
Yan Chunwei 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    const auto& param = *param_.get_mutable<param_t>();
    const auto* x_data = param.x->data<float>();
    const auto* y_data = param.y->data<float>();
    auto* o_data = param.output->mutable_data<float>();

    m_ = static_cast<int>(
        param.x->dims().Slice(0, param.x_num_col_dims).production());
    const int x_w = static_cast<int>(
        param.x->dims()
            .Slice(param.x_num_col_dims, param.x->dims().size())
            .production());
    int y_h = static_cast<int>(
        param.y->dims().Slice(0, param.y_num_col_dims).production());
    n_ = static_cast<int>(
        param.y->dims()
            .Slice(param.y_num_col_dims, param.y->dims().size())
            .production());

    CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h";
    k_ = x_w;
    VLOG(4) << "m: " << m_ << " n_: " << n_ << " k_: " << k_ << " y_h: " << y_h
            << " x_w: " << x_w;
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x_buf = param.x->data<float, cl::Buffer>();
    auto* y_buf = param.y->data<float, cl::Buffer>();
    auto* out_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
74
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
Y
Yan Chunwei 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, m_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, n_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, k_);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{static_cast<size_t>((m_ + 3) / 4),
                                        static_cast<size_t>((n_ + 3) / 4)};
94
    event_ = std::shared_ptr<cl::Event>(new cl::Event);
Y
Yan Chunwei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_buf, event_);
  }

 private:
  int m_, n_, k_;
  std::string kernel_func_name_{"mat_mul"};
109
  std::string build_options_{"-DCL_DTYPE_float"};
110
  std::string time_stamp_{GetTimeStamp()};
111
  std::shared_ptr<cl::Event> event_{nullptr};
Y
Yan Chunwei 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    mul, kOpenCL, kFloat, kNCHW, paddle::lite::kernels::opencl::MulCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();