softmax_op_test.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/softmax_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

int SoftmaxConverter(void* ctx, OpLite* op);

template <typename dtype>
void softmax_ref(const std::shared_ptr<operators::SoftmaxOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto x_data = x->data<dtype>();
  auto out_data = out->mutable_data<dtype>();
  DDim x_dims = x->dims();

  auto x_rank = x_dims.size();
  int axis = op_info->GetAttr<int>("axis");
  if (axis < 0) {
    axis += x_rank;
  }
  int axis_size = x_dims[axis];
  int outer_num = x_dims.Slice(0, axis).production();
  int inner_num = x_dims.Slice(axis + 1, x_rank).production();
  int compute_size = outer_num * inner_num;
  for (int i = 0; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int start = idx_outer * inner_num + idx_inner;
    int offset;

    offset = start;
    dtype max_data = std::numeric_limits<dtype>::lowest();
    for (int j = 0; j < axis_size; j++) {
      max_data = x_data[offset] > max_data ? x_data[offset] : max_data;
      offset += inner_num;
    }

    offset = start;
    dtype sum_data = (dtype)0;
    for (int j = 0; j < axis_size; j++) {
      out_data[offset] = exp(x_data[offset] - max_data);
      sum_data += out_data[offset];
      offset += inner_num;
    }

    offset = start;
    for (int j = 0; j < axis_size; j++) {
      out_data[offset] /= sum_data;
      offset += inner_num;
    }
  }
}

void test_softmax(const std::vector<int64_t>& input_shape, int axis) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize(input_shape);

  // initialize input&output data
  FillTensor<float>(x);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("softmax");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

  // create and convert op to NPU model, then run it on NPU
  auto op = CreateOp<operators::SoftmaxOp>(opdesc, &scope);
  // execute reference implementation and save to output tensor
  softmax_ref<float>(op);
  out_ref->CopyDataFrom(*out);

  int bs = x->dims()[0];
  int ic = x->dims()[1];
  int ih = x->dims()[2];
  int iw = x->dims()[3];
  Tensor input_trans;
  input_trans.Resize({bs, ic, ih, iw});
  transpose(x->mutable_data<float>(),
            input_trans.mutable_data<float>(),
            {bs, ic, ih, iw},
            {0, 2, 3, 1});

  out->Resize({bs, ih, iw, ic});
  x->CopyDataFrom(input_trans);
  x->Resize({bs, ih, iw, ic});

  LaunchOp(op, {x_var_name}, {out_var_name});

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  Tensor output_trans;
  output_trans.Resize({bs, ic, ih, iw});
  transpose(out_data,
            output_trans.mutable_data<float>(),
            {bs, ih, iw, ic},
            {0, 3, 1, 2});
  out_data = output_trans.mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(MLUBridges, softmax) {
  // test_softmax({1, 4}, -1);
  // // Bug exists in HiAI DDK when the number of items > 16500
  // test_softmax({1, 16500}, -1);
  // test_softmax({1, 4}, 0);
  // test_softmax({1, 4}, 1);
  // test_softmax({3, 4}, -1);
  // test_softmax({3, 4}, 0);
  // test_softmax({3, 4}, 1);
  // test_softmax({1, 4, 7}, -1);
  // test_softmax({1, 4, 7}, 0);
  // // Bug exists in HiAI DDK when axis is 1 and iw > 1
  // // test_softmax({1, 4, 7}, 1);
  // test_softmax({1, 4, 1}, 1);
  // test_softmax({1, 4, 7}, 2);
  // test_softmax({3, 4, 7}, -1);
  // test_softmax({3, 4, 7}, 0);
  // test_softmax({3, 4, 1}, 1);
  // test_softmax({3, 4, 7}, 2);
  test_softmax({1, 4, 7, 9}, -1);
  test_softmax({1, 4, 7, 9}, 0);
  test_softmax({1, 4, 7, 9}, 1);
  // Bug exists in HiAI DDK when axis is 2 and iw > 1
  // test_softmax({1, 4, 7, 9}, 2);
  test_softmax({1, 4, 7, 1}, 2);
  test_softmax({1, 4, 7, 9}, 3);
  test_softmax({3, 4, 7, 9}, -1);
  test_softmax({3, 4, 7, 9}, 0);
  test_softmax({3, 4, 7, 9}, 1);
  test_softmax({3, 4, 7, 1}, 2);
  test_softmax({3, 4, 7, 9}, 3);
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(MLU,
                         softmax,
                         paddle::lite::subgraph::mlu::SoftmaxConverter);