conv_kernel.inc.cl 56.3 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15 16 17 18 19 20 21 22 23 24
/*
conv
conv_bn
conv_add
conv_relu
conv_bn_relu
conv_add_relu
conv_add_bn_relu
*/

L
liuruilong 已提交
25
#include "cl_common.h"
L
liuruilong 已提交
26 27 28 29

__kernel void conv_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
L
liuruilong 已提交
30
                                              __read_only image2d_t input_image,
L
liuruilong 已提交
31
                                              __read_only image2d_t filter,
L
liuruilong 已提交
32

L
liuruilong 已提交
33
#ifdef BIASE
L
liuruilong 已提交
34
                                              __read_only image2d_t bias,
L
liuruilong 已提交
35 36 37 38 39 40
#endif

#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif
L
liuruilong 已提交
41

L
liuruilong 已提交
42 43 44 45 46 47
                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
L
liuruilong 已提交
48 49 50
                                              __private const int input_height,/* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {
L
liuruilong 已提交
51

L
liuruilong 已提交
52 53 54 55
    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

L
liuruilong 已提交
56 57 58 59 60 61 62
    if (out_c >= global_size_dim0 ||
        out_w >= global_size_dim1 ||
        out_nh >= global_size_dim2) {
        return;
    }


L
liuruilong 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    int2 stride_xy;
    stride_xy.x = stride;
    stride_xy.y = stride;

    int2 ouput_pos_in_one_block;
    ouput_pos_in_one_block.x = out_w;
    ouput_pos_in_one_block.y = out_nh;


    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    int2 in_pos_in_one_block;
    in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
    in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;

L
liuruilong 已提交
80
#ifdef BIASE
L
liuruilong 已提交
81
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
L
liuruilong 已提交
82
#else
L
liuruilong 已提交
83
    half4 output = 0.0f;
L
liuruilong 已提交
84
#endif
L
liuruilong 已提交
85

L
liuruilong 已提交
86
   half4 input[9];
L
liuruilong 已提交
87

L
liuruilong 已提交
88 89 90 91 92
   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        input[0] = select(read_imageh(input_image, sampler,
                            (int2)(pos_in.x - dilation, pos_in.y - dilation)),
                            (half4)(0.0f),
L
liuruilong 已提交
93
                            (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
L
liuruilong 已提交
94

L
liuruilong 已提交
95 96 97
        input[1] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y - dilation)),
                          (half4)(0.0f),
L
liuruilong 已提交
98
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
L
liuruilong 已提交
99

L
liuruilong 已提交
100 101 102
        input[2] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y - dilation)),
                          (half4)(0.0f),
L
liuruilong 已提交
103
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));
L
liuruilong 已提交
104

L
liuruilong 已提交
105 106 107
        input[3] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y)),
                          (half4)(0.0f),
L
liuruilong 已提交
108
                          (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
L
liuruilong 已提交
109

L
liuruilong 已提交
110 111 112
        input[4] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y)),
                          (half4)(0.0f),
L
liuruilong 已提交
113
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));
L
liuruilong 已提交
114

L
liuruilong 已提交
115 116 117
        input[5] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y)),
                          (half4)(0.0f),
L
liuruilong 已提交
118
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));
L
liuruilong 已提交
119

L
liuruilong 已提交
120 121 122
        input[6] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y + dilation)),
                          (half4)(0.0f),
L
liuruilong 已提交
123
                          (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
L
liuruilong 已提交
124

L
liuruilong 已提交
125 126 127
        input[7] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y + dilation)),
                          (half4)(0.0f),
L
liuruilong 已提交
128
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
L
liuruilong 已提交
129

L
liuruilong 已提交
130 131 132
        input[8] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y + dilation)),
                          (half4)(0.0f),
L
liuruilong 已提交
133
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));
L
liuruilong 已提交
134

Y
yangfei 已提交
135 136

/*
L
liuruilong 已提交
137
        for (int j = 0; j < 9; ++j) {
Y
yangfei 已提交
138 139 140
            int2 pos_of_weight;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
Y
yangfei 已提交
141
            half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
Y
yangfei 已提交
142 143 144
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
Y
yangfei 已提交
145
            half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
Y
yangfei 已提交
146 147 148
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
Y
yangfei 已提交
149
            half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
Y
yangfei 已提交
150 151 152
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
Y
yangfei 已提交
153
            half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
Y
yangfei 已提交
154 155 156 157
            output.w += dot(input[j], weight_w);
        }
*/
            int j = 0;
L
liuruilong 已提交
158 159 160 161
            int2 pos_of_weight;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
L
liuruilong 已提交
162 163
            output.x += dot(input[j], weight_x);

L
liuruilong 已提交
164 165
            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
L
liuruilong 已提交
166 167
            output.y += dot(input[j], weight_y);

L
liuruilong 已提交
168 169
            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
L
liuruilong 已提交
170 171
            output.z += dot(input[j], weight_z);

L
liuruilong 已提交
172 173
            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
L
liuruilong 已提交
174
            output.w += dot(input[j], weight_w);
Y
yangfei 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

            j = 1;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 2;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 3;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 4;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 5;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

           j = 6;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

           j = 7;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

           j = 8;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

L
liuruilong 已提交
320 321
    }

L
liuruilong 已提交
322
#ifdef BATCH_NORM
L
liuruilong 已提交
323
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
L
liuruilong 已提交
324 325 326
#endif

#ifdef RELU
L
liuruilong 已提交
327 328 329
    output = activation(output);
#endif

L
liuruilong 已提交
330
    write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
L
liuruilong 已提交
331 332
}

L
liuruilong 已提交
333 334 335



L
liuruilong 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
__kernel void depth_conv_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input,
                                              __read_only image2d_t filter,
#ifdef BIASE
                                              __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif
                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height, /* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

L
liuruilong 已提交
362 363 364
    int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);


L
liuruilong 已提交
365 366 367 368 369
    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    const int batch_index = out_nh / output_height;
L
liuruilong 已提交
370

L
liuruilong 已提交
371
    const int out_nh_in_one_batch = out_nh % output_height;
L
liuruilong 已提交
372 373


L
liuruilong 已提交
374 375
    int2 stride_xy = (int2)(stride, stride);
    int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);
L
liuruilong 已提交
376

L
liuruilong 已提交
377
    int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
L
liuruilong 已提交
378 379

#ifdef BIASE
L
liuruilong 已提交
380
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
L
liuruilong 已提交
381
#else
L
liuruilong 已提交
382
    half4 output = 0.0f;
L
liuruilong 已提交
383 384
#endif

Y
yangfei 已提交
385 386
    const int filter_width = 3;
    const int filter_height = 3;
L
liuruilong 已提交
387

Y
yangfei 已提交
388
    int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);
L
liuruilong 已提交
389

Y
yangfei 已提交
390
    int2 pos_in_filter_block = (int2)(out_c * filter_width, batch_index * filter_height);
L
liuruilong 已提交
391

Y
yangfei 已提交
392 393
    int filter_x = pos_in_filter_block.x ;
    int filter_y = pos_in_filter_block.y ;
L
liuruilong 已提交
394

Y
yangfei 已提交
395
    half4 inputs[9];
L
liuruilong 已提交
396

Y
yangfei 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height) << 15));

        inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height) << 15));

        inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height) << 15));

        inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height) << 15));
        /*
        if (output_pos.x == 112 && output_pos.y == 0) {
              half4 input1 = inputs[3];
              float4 in = (float4)(input1.x, input1.y, input1.z, input1.w);
              printf(" input4 3 - %v4hlf \n", in);
              printf(" --- %d ---\n", in_pos_in_one_block.x - 1);
        }
        */


        inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height) << 15));

        inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height) << 15));

        inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height) << 15));

    half4 filters[9];
    filters[0] =  read_imageh(filter, sampler,(int2)(filter_x,filter_y));
    filters[1] =  read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y));
    filters[2] =  read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y));
    filters[3] =  read_imageh(filter, sampler,(int2)(filter_x,filter_y + 1));
    filters[4] =  read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y + 1));
    filters[5] =  read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y + 1));
    filters[6] =  read_imageh(filter, sampler,(int2)(filter_x,filter_y + 2));
    filters[7] =  read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y + 2));
    filters[8] =  read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y + 2));

    for(int i = 0 ;i < 9 ; i++){
     output += inputs[i] * filters[i];
L
liuruilong 已提交
455 456
    }
#ifdef BATCH_NORM
L
liuruilong 已提交
457
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
L
liuruilong 已提交
458 459 460 461 462
#endif

#ifdef RELU
    output = activation(output);
#endif
L
liuruilong 已提交
463

L
liuruilong 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

    /*

    if (output_pos.x == 112 && output_pos.y == 0) {

        for (int i = 0; i < 9; ++i) {
            half4 input1 = inputs[i];
            float4 in = (float4)(input1.x, input1.y, input1.z, input1.w);
            printf(" input4 %d - %v4hlf \n", i, in);
        }

        float4 out = (float4)(output.x, output.y, output.z, output.w);
        printf(" depth wise output output4 = %v4hlf \n", out);
        printf(" pos_in_input_block -x %d \n ", pos_in_input_block.x);
        printf(" pos_in_input_block -y %d \n ", pos_in_input_block.y);
        printf(" in_pos_in_one_block - x %d \n", in_pos_in_one_block.x);
        printf(" in_pos_in_one_block - y %d \n", in_pos_in_one_block.y);
    }

    */

L
liuruilong 已提交
485
    write_imageh(output_image, output_pos, output);
L
liuruilong 已提交
486 487 488

}

L
liuruilong 已提交
489

L
liuruilong 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
__kernel void conv_1x1(__private const int global_size_dim0,
                       __private const int global_size_dim1,
                       __private const int global_size_dim2,
                       __read_only image2d_t input_image,
                       __read_only image2d_t filter,
#ifdef BIASE
                       __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                       __read_only image2d_t new_scale,
                       __read_only image2d_t new_biase,
#endif
                       __write_only image2d_t output_image,
                       __private const int stride,
                       __private const int offset,
                       __private const int input_c,
                       __private const int dilation,
                       __private const int input_width,/* of one block */
                       __private const int input_height,/* of one block */
                       __private const int output_width,
                       __private const int output_height) {
  const int out_c = get_global_id(0);
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                           CLK_ADDRESS_CLAMP         |
                           CLK_FILTER_NEAREST;
L
liuruilong 已提交
518

L
liuruilong 已提交
519 520 521 522
  const uint kernelHXW = 1;
  int2 stride_xy = (int2)(stride, stride);
  int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
  int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);
L
liuruilong 已提交
523

L
liuruilong 已提交
524 525 526 527 528 529
#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0f;
#endif

L
liuruilong 已提交
530 531 532
   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        half4 input = read_imageh(input_image, sampler, pos_in);
L
liuruilong 已提交
533

L
liuruilong 已提交
534 535 536 537
        half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
        half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
        half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
        half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
L
liuruilong 已提交
538
/*
L
liuruilong 已提交
539 540 541 542 543
        output.x = dot(input, weight0);
        output.y = dot(input, weight1);
        output.z = dot(input, weight2);
        output.w = dot(input, weight3);
*/
L
liuruilong 已提交
544

L
liuruilong 已提交
545 546 547 548
        output = mad(input.x, weight0, output);
        output = mad(input.y, weight1, output);
        output = mad(input.z, weight2, output);
        output = mad(input.w, weight3, output);
L
liuruilong 已提交
549

L
liuruilong 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
   }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef RELU
  output = activation(output);
#endif

  int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos, output);
}



/*

__kernel void conv_1x1_4(__private const int global_size_dim0,
                       __private const int global_size_dim1,
                       __private const int global_size_dim2,
                       __read_only image2d_t input_image,
                       __read_only image2d_t filter,
#ifdef BIASE
                       __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                       __read_only image2d_t new_scale,
                       __read_only image2d_t new_biase,
#endif
                       __write_only image2d_t output_image,
                       __private const int stride,
                       __private const int offset,
                       __private const int input_c,
                       __private const int dilation,
                       __private const int input_width,
                       __private const int input_height,
                       __private const int output_width,
                       __private const int output_height) {
  const int out_c = get_global_id(0) * 4;
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                           CLK_ADDRESS_CLAMP         |
                           CLK_FILTER_NEAREST;

  int2 stride_xy = (int2)(stride, stride);
  int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
  int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);

#ifdef BIASE
    half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
    half4 output1 = read_imageh(bias, sampler, (int2)(out_c + 1, 0));
    half4 output2 = read_imageh(bias, sampler, (int2)(out_c + 2, 0));
    half4 output3 = read_imageh(bias, sampler, (int2)(out_c + 3, 0));
#else
    half4 output0 = 0.0f;
    half4 output1 = 0.0f;
    half4 output2 = 0.0f;
    half4 output3 = 0.0f;
#endif
L
liuruilong 已提交
612

L
liuruilong 已提交
613
   for (int i = 0; i < input_c; ++i) {
L
liuruilong 已提交
614
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
L
liuruilong 已提交
615 616
        half4 input = read_imageh(input_image, sampler, pos_in);

L
liuruilong 已提交
617 618 619 620
        half4 weight0_0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
        half4 weight0_1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
        half4 weight0_2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
        half4 weight0_3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
L
liuruilong 已提交
621

L
liuruilong 已提交
622 623 624 625
        output0 = mad(input.x, weight0_0, output0);
        output0 = mad(input.y, weight0_1, output0);
        output0 = mad(input.z, weight0_2, output0);
        output0 = mad(input.w, weight0_3, output0);
L
liuruilong 已提交
626

L
liuruilong 已提交
627 628 629 630
        half4 weight1_0 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 0));
        half4 weight1_1 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 1));
        half4 weight1_2 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 2));
        half4 weight1_3 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 3));
L
liuruilong 已提交
631

L
liuruilong 已提交
632 633 634 635
        output1 = mad(input.x, weight1_0, output1);
        output1 = mad(input.y, weight1_1, output1);
        output1 = mad(input.z, weight1_2, output1);
        output1 = mad(input.w, weight1_3, output1);
L
liuruilong 已提交
636

L
liuruilong 已提交
637 638 639 640
        half4 weight2_0 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 0));
        half4 weight2_1 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 1));
        half4 weight2_2 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 2));
        half4 weight2_3 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 3));
L
liuruilong 已提交
641

L
liuruilong 已提交
642 643 644 645
        output2 = mad(input.x, weight2_0, output2);
        output2 = mad(input.y, weight2_1, output2);
        output2 = mad(input.z, weight2_2, output2);
        output2 = mad(input.w, weight2_3, output2);
L
liuruilong 已提交
646

L
liuruilong 已提交
647 648 649 650
        half4 weight3_0 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 0));
        half4 weight3_1 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 1));
        half4 weight3_2 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 2));
        half4 weight3_3 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 3));
L
liuruilong 已提交
651

L
liuruilong 已提交
652 653 654 655
        output3 = mad(input.x, weight3_0, output3);
        output3 = mad(input.y, weight3_1, output3);
        output3 = mad(input.z, weight3_2, output3);
        output3 = mad(input.w, weight3_3, output3);
L
liuruilong 已提交
656

L
liuruilong 已提交
657
   }
L
liuruilong 已提交
658

L
liuruilong 已提交
659
#ifdef BATCH_NORM
L
liuruilong 已提交
660
    output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c + 0, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 0, 0));
L
liuruilong 已提交
661

L
liuruilong 已提交
662
    output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c + 1, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 1, 0));
L
liuruilong 已提交
663

L
liuruilong 已提交
664
    output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c + 2, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 2, 0));
L
liuruilong 已提交
665

L
liuruilong 已提交
666 667 668
    output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c + 3, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 3, 0));

#endif
L
liuruilong 已提交
669

L
liuruilong 已提交
670
#ifdef RELU
L
liuruilong 已提交
671 672 673 674
  output0 = activation(output0);
  output1 = activation(output1);
  output2 = activation(output2);
  output3 = activation(output3);
L
liuruilong 已提交
675 676
#endif

L
liuruilong 已提交
677 678
  int2 output_pos0 = (int2)(out_c * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos0, output0);
L
liuruilong 已提交
679 680


L
liuruilong 已提交
681 682
  int2 output_pos1 = (int2)((out_c + 1) * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos1, output1);
L
liuruilong 已提交
683

L
liuruilong 已提交
684 685 686 687 688 689 690

  int2 output_pos2 = (int2)((out_c + 2) * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos2, output2);


  int2 output_pos3 = (int2)((out_c + 3) * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos3, output3);
L
liuruilong 已提交
691
}
L
liuruilong 已提交
692 693

*/
Y
yangfei 已提交
694

Y
yangfei 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
__kernel void conv_7x7(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input_image,
                                              __read_only image2d_t filter_image,

#ifdef BIASE
                                              __read_only image2d_t bias,
#endif

#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif

                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height,/* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    if (out_c >= global_size_dim0 ||
        out_w >= global_size_dim1 ||
        out_nh >= global_size_dim2) {
        return;
    }
    const filter_n0 = 4 * out_c + 0;
    const filter_n1 = 4 * out_c + 1;
    const filter_n2 = 4 * out_c + 2;
    const filter_n3 = 4 * out_c + 3;

    int2 stride_xy;
    stride_xy.x = stride;
    stride_xy.y = stride;

    int2 ouput_pos_in_one_block;
    ouput_pos_in_one_block.x = out_w;
    ouput_pos_in_one_block.y = out_nh;


    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    int2 in_pos_in_one_block;
    in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
    in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;

#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0f;
#endif

   half4 input;
   half4 filter[4];
   int2 filter_pos0;
   int2 filter_pos1;
   int2 filter_pos2;
   int2 filter_pos3;
   for (int i = 0; i < input_c; ++i) {
   int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        for(int j = 0; j < 7; j++){
         for(int k = 0; k < 7; k++){
          input  =  select(read_imageh(input_image, sampler,
                                (int2)(pos_in.x + (j - 3) * dilation, pos_in.y +  (k - 3) * dilation)),
                                (half4)(0.0f),
                                (ushort4)((in_pos_in_one_block.x + (j - 3) * dilation < 0 || in_pos_in_one_block.y + (k - 3) * dilation < 0 || in_pos_in_one_block.x + (j - 3) * dilation >= input_width || in_pos_in_one_block.y + (k - 3) * dilation >= input_height) << 15));
         int filter_h = k;
         int filter_w = j;
         int filter_c = i;

         filter_pos0.x = filter_c * 7 + filter_w;
         filter_pos0.y = filter_n0 * 7 + filter_h;

         filter_pos1.x = filter_c * 7 + filter_w;
         filter_pos1.y = filter_n1 * 7 + filter_h;

         filter_pos2.x = filter_c * 7 + filter_w;
         filter_pos2.y = filter_n2 * 7 + filter_h;

         filter_pos3.x = filter_c * 7 + filter_w;
         filter_pos3.y = filter_n3 * 7 + filter_h;

         filter[0] =  read_imageh(filter_image, sampler, filter_pos0);
         filter[1] =  read_imageh(filter_image, sampler, filter_pos1);
         filter[2] =  read_imageh(filter_image, sampler, filter_pos2);
         filter[3] =  read_imageh(filter_image, sampler, filter_pos3);

         output.x += dot(input, filter[0]);
         output.y += dot(input, filter[1]);
         output.z += dot(input, filter[2]);
         output.w += dot(input, filter[3]);
         }
        }
    }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef RELU
    output = activation(output);
#endif

    write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}

__kernel void conv_5x5(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input_image,
                                              __read_only image2d_t filter_image,

#ifdef BIASE
                                              __read_only image2d_t bias,
#endif

#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif

                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height,/* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    if (out_c >= global_size_dim0 ||
        out_w >= global_size_dim1 ||
        out_nh >= global_size_dim2) {
        return;
    }
    const filter_n0 = 4 * out_c + 0;
    const filter_n1 = 4 * out_c + 1;
    const filter_n2 = 4 * out_c + 2;
    const filter_n3 = 4 * out_c + 3;

    int2 stride_xy;
    stride_xy.x = stride;
    stride_xy.y = stride;

    int2 ouput_pos_in_one_block;
    ouput_pos_in_one_block.x = out_w;
    ouput_pos_in_one_block.y = out_nh;


    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    int2 in_pos_in_one_block;
    in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
    in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;

#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0f;
#endif

   half4 input;
   half4 filter[4];
   int2 filter_pos0;
   int2 filter_pos1;
   int2 filter_pos2;
   int2 filter_pos3;
   for (int i = 0; i < input_c; ++i) {
   int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        for(int j = 0; j < 5; j++){
         for(int k = 0; k < 5; k++){
          input  =  select(read_imageh(input_image, sampler,
                                (int2)(pos_in.x + (j - 2) * dilation, pos_in.y +  (k - 2) * dilation)),
                                (half4)(0.0f),
                                (ushort4)((in_pos_in_one_block.x + (j - 2) * dilation < 0 || in_pos_in_one_block.y + (k - 2) * dilation < 0 || in_pos_in_one_block.x + (j - 2) * dilation >= input_width || in_pos_in_one_block.y + (k - 2) * dilation >= input_height) << 15));
         int filter_h = k;
         int filter_w = j;
         int filter_c = i;

         filter_pos0.x = filter_c * 5 + filter_w;
         filter_pos0.y = filter_n0 * 5 + filter_h;

         filter_pos1.x = filter_c * 5 + filter_w;
         filter_pos1.y = filter_n1 * 5 + filter_h;

         filter_pos2.x = filter_c * 5 + filter_w;
         filter_pos2.y = filter_n2 * 5 + filter_h;

         filter_pos3.x = filter_c * 5 + filter_w;
         filter_pos3.y = filter_n3 * 5 + filter_h;

         filter[0] =  read_imageh(filter_image, sampler, filter_pos0);
         filter[1] =  read_imageh(filter_image, sampler, filter_pos1);
         filter[2] =  read_imageh(filter_image, sampler, filter_pos2);
         filter[3] =  read_imageh(filter_image, sampler, filter_pos3);

         output.x += dot(input, filter[0]);
         output.y += dot(input, filter[1]);
         output.z += dot(input, filter[2]);
         output.w += dot(input, filter[3]);
         }
        }
    }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef RELU
    output = activation(output);
#endif

    write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}

Y
yangfei 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
__kernel void convBNAdd_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input_image,
                                              __read_only image2d_t filter,

#ifdef BIASE
                                              __read_only image2d_t bias,
#endif

#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif

                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height,/* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    if (out_c >= global_size_dim0 ||
        out_w >= global_size_dim1 ||
        out_nh >= global_size_dim2) {
        return;
    }


    int2 stride_xy;
    stride_xy.x = stride;
    stride_xy.y = stride;

    int2 ouput_pos_in_one_block;
    ouput_pos_in_one_block.x = out_w;
    ouput_pos_in_one_block.y = out_nh;


    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    int2 in_pos_in_one_block;
    in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
    in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;


    half4 output = (half4)0.0f;

   half4 input[9];

   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        input[0] = select(read_imageh(input_image, sampler,
                            (int2)(pos_in.x - dilation, pos_in.y - dilation)),
                            (half4)(0.0f),
                            (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));

        input[1] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y - dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));

        input[2] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y - dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));

        input[3] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        input[4] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        input[5] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        input[6] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y + dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));

        input[7] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y + dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));

        input[8] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y + dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));


/*
        for (int j = 0; j < 9; ++j) {
            int2 pos_of_weight;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);
        }
*/
            int j = 0;
            int2 pos_of_weight;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 1;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 2;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 3;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 4;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 5;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

           j = 6;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

           j = 7;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

           j = 8;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

    }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef BIASE
    output += read_imageh(bias, sampler, (int2)(out_c * global_size_dim1 + out_w, out_nh));
#endif

#ifdef RELU
    output = activation(output);
#endif

    write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}

__kernel void convBNAdd_1x1(__private const int global_size_dim0,
                       __private const int global_size_dim1,
                       __private const int global_size_dim2,
                       __read_only image2d_t input_image,
                       __read_only image2d_t filter,
#ifdef BIASE
                       __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                       __read_only image2d_t new_scale,
                       __read_only image2d_t new_biase,
#endif
                       __write_only image2d_t output_image,
                       __private const int stride,
                       __private const int offset,
                       __private const int input_c,
                       __private const int dilation,
                       __private const int input_width,/* of one block */
                       __private const int input_height,/* of one block */
                       __private const int output_width,
                       __private const int output_height) {
  const int out_c = get_global_id(0);
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                           CLK_ADDRESS_CLAMP         |
                           CLK_FILTER_NEAREST;

  const uint kernelHXW = 1;
  int2 stride_xy = (int2)(stride, stride);
  int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
  int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);


  half4 output = 0.0f;

   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        half4 input = read_imageh(input_image, sampler, pos_in);

        half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
        half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
        half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
        half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
/*
        output.x = dot(input, weight0);
        output.y = dot(input, weight1);
        output.z = dot(input, weight2);
        output.w = dot(input, weight3);
*/

        output = mad(input.x, weight0, output);
        output = mad(input.y, weight1, output);
        output = mad(input.z, weight2, output);
        output = mad(input.w, weight3, output);

   }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef BIASE
   output += read_imageh(bias, sampler, (int2)(out_c * global_size_dim1 + out_w, out_nh));
#endif

#ifdef RELU
  output = activation(output);
#endif

  int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos, output);
}
Y
yangfei 已提交
1308 1309 1310 1311 1312 1313 1314