conv_kernel.inc.cl 30.8 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
conv
conv_bn
conv_add
conv_relu
conv_bn_relu
conv_add_relu
conv_add_bn_relu
*/

#include "cl_common.h"

__kernel void conv_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input_image,
                                              __read_only image2d_t filter,

#ifdef BIASE
                                              __read_only image2d_t bias,
#endif

#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif

                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height,/* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    if (out_c >= global_size_dim0 ||
        out_w >= global_size_dim1 ||
        out_nh >= global_size_dim2) {
        return;
    }


    int2 stride_xy;
    stride_xy.x = stride;
    stride_xy.y = stride;

    int2 ouput_pos_in_one_block;
    ouput_pos_in_one_block.x = out_w;
    ouput_pos_in_one_block.y = out_nh;


    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    int2 in_pos_in_one_block;
    in_pos_in_one_block.x = ouput_pos_in_one_block.x * stride + offset;
    in_pos_in_one_block.y = ouput_pos_in_one_block.y * stride + offset;

#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0f;
#endif

   half4 input[9];

   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        input[0] = select(read_imageh(input_image, sampler,
                            (int2)(pos_in.x - dilation, pos_in.y - dilation)),
                            (half4)(0.0f),
                            (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));

        input[1] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y - dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));

        input[2] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y - dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y - dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y - dilation >= input_height) << 15));

        input[3] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        input[4] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        input[5] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        input[6] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x - dilation, pos_in.y + dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x - dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x - dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));

        input[7] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x, pos_in.y + dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));

        input[8] = select(read_imageh(input_image, sampler,
                          (int2)(pos_in.x + dilation, pos_in.y + dilation)),
                          (half4)(0.0f),
                          (ushort4)((in_pos_in_one_block.x + dilation < 0 || in_pos_in_one_block.y + dilation < 0 || in_pos_in_one_block.x + dilation >= input_width || in_pos_in_one_block.y + dilation >= input_height) << 15));


/*
        for (int j = 0; j < 9; ++j) {
            int2 pos_of_weight;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            float4 weight_x = read_imagef(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            float4 weight_y = read_imagef(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            float4 weight_z = read_imagef(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            float4 weight_w = read_imagef(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);
        }
*/
            int j = 0;
            int2 pos_of_weight;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            half4 weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            half4 weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            half4 weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            half4 weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 1;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 2;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 3;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 4;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

            j = 5;
            pos_of_weight.x = i * 3 + j % 3;
            pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
            weight_x = read_imageh(filter, sampler, pos_of_weight);
            output.x += dot(input[j], weight_x);

            pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
            weight_y = read_imageh(filter, sampler, pos_of_weight);
            output.y += dot(input[j], weight_y);

            pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
            weight_z = read_imageh(filter, sampler, pos_of_weight);
            output.z += dot(input[j], weight_z);

            pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
            weight_w = read_imageh(filter, sampler, pos_of_weight);
            output.w += dot(input[j], weight_w);

           j = 6;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

           j = 7;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

           j = 8;
           pos_of_weight.x = i * 3 + j % 3;
           pos_of_weight.y = out_c * 4 * 3 + 0 * 3 + j / 3;
           weight_x = read_imageh(filter, sampler, pos_of_weight);
           output.x += dot(input[j], weight_x);

           pos_of_weight.y = out_c * 4 * 3 + 1 * 3 + j / 3;
           weight_y = read_imageh(filter, sampler, pos_of_weight);
           output.y += dot(input[j], weight_y);

           pos_of_weight.y = out_c * 4 * 3 + 2 * 3 + j / 3;
           weight_z = read_imageh(filter, sampler, pos_of_weight);
           output.z += dot(input[j], weight_z);

           pos_of_weight.y = out_c * 4 * 3 + 3 * 3 + j / 3;
           weight_w = read_imageh(filter, sampler, pos_of_weight);
           output.w += dot(input[j], weight_w);

    }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef RELU
    output = activation(output);
#endif

    write_imageh(output_image, (int2)(out_c * global_size_dim1 + out_w, out_nh), output);
}




__kernel void depth_conv_3x3(__private const int global_size_dim0,
                                              __private const int global_size_dim1,
                                              __private const int global_size_dim2,
                                              __read_only image2d_t input,
                                              __read_only image2d_t filter,
#ifdef BIASE
                                              __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                                              __read_only image2d_t new_scale,
                                              __read_only image2d_t new_biase,
#endif
                                              __write_only image2d_t output_image,
                                              __private const int stride,
                                              __private const int offset,
                                              __private const int input_c,
                                              __private const int dilation,
                                              __private const int input_width,/* of one block */
                                              __private const int input_height, /* of one block */
                                              __private const int output_width,
                                              __private const int output_height) {

    const int out_c = get_global_id(0);
    const int out_w = get_global_id(1);
    const int out_nh = get_global_id(2);

    int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);


    const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                              CLK_ADDRESS_CLAMP          |
                              CLK_FILTER_NEAREST;

    const int batch_index = out_nh / output_height;

    const int out_nh_in_one_batch = out_nh % output_height;


    int2 stride_xy = (int2)(stride, stride);
    int2 ouput_pos_in_one_block = (int2)(out_w, out_nh_in_one_batch);

    int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);

#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0f;
#endif

    const int filter_width = 3;
    const int filter_height = 3;

    int2 pos_in_input_block = (int2)(out_c * input_width, batch_index * input_height);

    int2 pos_in_filter_block = (int2)(out_c * filter_width, batch_index * filter_height);

    int filter_x = pos_in_filter_block.x ;
    int filter_y = pos_in_filter_block.y ;

    half4 inputs[9];

        inputs[0] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height) << 15));

        inputs[1] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y - 1 >= input_height) << 15));

        inputs[2] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y - 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y - 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y - 1 >= input_height) << 15));

        inputs[3] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y >= input_height) << 15));
        /*
        if (output_pos.x == 112 && output_pos.y == 0) {
              half4 input1 = inputs[3];
              float4 in = (float4)(input1.x, input1.y, input1.z, input1.w);
              printf(" input4 3 - %v4hlf \n", in);
              printf(" --- %d ---\n", in_pos_in_one_block.x - 1);
        }
        */


        inputs[4] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        inputs[5] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y >= input_height) << 15));

        inputs[6] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x - 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x - 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x - 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height) << 15));

        inputs[7] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x >= input_width || in_pos_in_one_block.y + 1 >= input_height) << 15));

        inputs[8] = select(read_imageh(input, sampler, (int2)(pos_in_input_block.x + in_pos_in_one_block.x + 1, pos_in_input_block.y + in_pos_in_one_block.y + 1)),
                           (half4)(0.0f),
                           (ushort4)((in_pos_in_one_block.x + 1 < 0 || in_pos_in_one_block.y + 1 < 0 || in_pos_in_one_block.x + 1 >= input_width || in_pos_in_one_block.y + 1 >= input_height) << 15));

    half4 filters[9];
    filters[0] =  read_imageh(filter, sampler,(int2)(filter_x,filter_y));
    filters[1] =  read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y));
    filters[2] =  read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y));
    filters[3] =  read_imageh(filter, sampler,(int2)(filter_x,filter_y + 1));
    filters[4] =  read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y + 1));
    filters[5] =  read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y + 1));
    filters[6] =  read_imageh(filter, sampler,(int2)(filter_x,filter_y + 2));
    filters[7] =  read_imageh(filter, sampler,(int2)(filter_x + 1,filter_y + 2));
    filters[8] =  read_imageh(filter, sampler,(int2)(filter_x + 2,filter_y + 2));

    for(int i = 0 ;i < 9 ; i++){
     output += inputs[i] * filters[i];
    }
#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef RELU
    output = activation(output);
#endif


    /*

    if (output_pos.x == 112 && output_pos.y == 0) {

        for (int i = 0; i < 9; ++i) {
            half4 input1 = inputs[i];
            float4 in = (float4)(input1.x, input1.y, input1.z, input1.w);
            printf(" input4 %d - %v4hlf \n", i, in);
        }

        float4 out = (float4)(output.x, output.y, output.z, output.w);
        printf(" depth wise output output4 = %v4hlf \n", out);
        printf(" pos_in_input_block -x %d \n ", pos_in_input_block.x);
        printf(" pos_in_input_block -y %d \n ", pos_in_input_block.y);
        printf(" in_pos_in_one_block - x %d \n", in_pos_in_one_block.x);
        printf(" in_pos_in_one_block - y %d \n", in_pos_in_one_block.y);
    }

    */

    write_imageh(output_image, output_pos, output);

}


__kernel void conv_1x1(__private const int global_size_dim0,
                       __private const int global_size_dim1,
                       __private const int global_size_dim2,
                       __read_only image2d_t input_image,
                       __read_only image2d_t filter,
#ifdef BIASE
                       __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                       __read_only image2d_t new_scale,
                       __read_only image2d_t new_biase,
#endif
                       __write_only image2d_t output_image,
                       __private const int stride,
                       __private const int offset,
                       __private const int input_c,
                       __private const int dilation,
                       __private const int input_width,/* of one block */
                       __private const int input_height,/* of one block */
                       __private const int output_width,
                       __private const int output_height) {
  const int out_c = get_global_id(0);
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                           CLK_ADDRESS_CLAMP         |
                           CLK_FILTER_NEAREST;

  const uint kernelHXW = 1;
  int2 stride_xy = (int2)(stride, stride);
  int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
  int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);

#ifdef BIASE
    half4 output = read_imageh(bias, sampler, (int2)(out_c, 0));
#else
    half4 output = 0.0f;
#endif

   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        half4 input = read_imageh(input_image, sampler, pos_in);

        half4 weight0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
        half4 weight1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
        half4 weight2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
        half4 weight3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));
/*
        output.x = dot(input, weight0);
        output.y = dot(input, weight1);
        output.z = dot(input, weight2);
        output.w = dot(input, weight3);
*/

        output = mad(input.x, weight0, output);
        output = mad(input.y, weight1, output);
        output = mad(input.z, weight2, output);
        output = mad(input.w, weight3, output);

   }

#ifdef BATCH_NORM
    output = output * read_imageh(new_scale, sampler, (int2)(out_c, 0)) + read_imageh(new_biase, sampler, (int2)(out_c, 0));
#endif

#ifdef RELU
  output = activation(output);
#endif

  int2 output_pos = (int2)(out_c * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos, output);
}



/*

__kernel void conv_1x1_4(__private const int global_size_dim0,
                       __private const int global_size_dim1,
                       __private const int global_size_dim2,
                       __read_only image2d_t input_image,
                       __read_only image2d_t filter,
#ifdef BIASE
                       __read_only image2d_t bias,
#endif
#ifdef BATCH_NORM
                       __read_only image2d_t new_scale,
                       __read_only image2d_t new_biase,
#endif
                       __write_only image2d_t output_image,
                       __private const int stride,
                       __private const int offset,
                       __private const int input_c,
                       __private const int dilation,
                       __private const int input_width,
                       __private const int input_height,
                       __private const int output_width,
                       __private const int output_height) {
  const int out_c = get_global_id(0) * 4;
  const int out_w = get_global_id(1);
  const int out_nh = get_global_id(2);

  const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |
                           CLK_ADDRESS_CLAMP         |
                           CLK_FILTER_NEAREST;

  int2 stride_xy = (int2)(stride, stride);
  int2 ouput_pos_in_one_block = (int2)(out_w, out_nh);
  int2 in_pos_in_one_block = ouput_pos_in_one_block * stride_xy + (int2)(offset, offset);

#ifdef BIASE
    half4 output0 = read_imageh(bias, sampler, (int2)(out_c, 0));
    half4 output1 = read_imageh(bias, sampler, (int2)(out_c + 1, 0));
    half4 output2 = read_imageh(bias, sampler, (int2)(out_c + 2, 0));
    half4 output3 = read_imageh(bias, sampler, (int2)(out_c + 3, 0));
#else
    half4 output0 = 0.0f;
    half4 output1 = 0.0f;
    half4 output2 = 0.0f;
    half4 output3 = 0.0f;
#endif

   for (int i = 0; i < input_c; ++i) {
        int2 pos_in = (int2)(i * input_width + in_pos_in_one_block.x, in_pos_in_one_block.y);
        half4 input = read_imageh(input_image, sampler, pos_in);

        half4 weight0_0 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 0));
        half4 weight0_1 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 1));
        half4 weight0_2 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 2));
        half4 weight0_3 = read_imageh(filter, sampler, (int2)(out_c, i * 4 + 3));

        output0 = mad(input.x, weight0_0, output0);
        output0 = mad(input.y, weight0_1, output0);
        output0 = mad(input.z, weight0_2, output0);
        output0 = mad(input.w, weight0_3, output0);

        half4 weight1_0 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 0));
        half4 weight1_1 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 1));
        half4 weight1_2 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 2));
        half4 weight1_3 = read_imageh(filter, sampler, (int2)(out_c + 1, i * 4 + 3));

        output1 = mad(input.x, weight1_0, output1);
        output1 = mad(input.y, weight1_1, output1);
        output1 = mad(input.z, weight1_2, output1);
        output1 = mad(input.w, weight1_3, output1);

        half4 weight2_0 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 0));
        half4 weight2_1 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 1));
        half4 weight2_2 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 2));
        half4 weight2_3 = read_imageh(filter, sampler, (int2)(out_c + 2, i * 4 + 3));

        output2 = mad(input.x, weight2_0, output2);
        output2 = mad(input.y, weight2_1, output2);
        output2 = mad(input.z, weight2_2, output2);
        output2 = mad(input.w, weight2_3, output2);

        half4 weight3_0 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 0));
        half4 weight3_1 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 1));
        half4 weight3_2 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 2));
        half4 weight3_3 = read_imageh(filter, sampler, (int2)(out_c + 3, i * 4 + 3));

        output3 = mad(input.x, weight3_0, output3);
        output3 = mad(input.y, weight3_1, output3);
        output3 = mad(input.z, weight3_2, output3);
        output3 = mad(input.w, weight3_3, output3);

   }

#ifdef BATCH_NORM
    output0 = output0 * read_imageh(new_scale, sampler, (int2)(out_c + 0, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 0, 0));

    output1 = output1 * read_imageh(new_scale, sampler, (int2)(out_c + 1, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 1, 0));

    output2 = output2 * read_imageh(new_scale, sampler, (int2)(out_c + 2, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 2, 0));

    output3 = output3 * read_imageh(new_scale, sampler, (int2)(out_c + 3, 0)) + read_imageh(new_biase, sampler, (int2)(out_c + 3, 0));

#endif

#ifdef RELU
  output0 = activation(output0);
  output1 = activation(output1);
  output2 = activation(output2);
  output3 = activation(output3);
#endif

  int2 output_pos0 = (int2)(out_c * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos0, output0);


  int2 output_pos1 = (int2)((out_c + 1) * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos1, output1);


  int2 output_pos2 = (int2)((out_c + 2) * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos2, output2);


  int2 output_pos3 = (int2)((out_c + 3) * global_size_dim1 + out_w, out_nh);
  write_imageh(output_image, output_pos3, output3);
}

*/