concat_kernel.cpp 5.6 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONCAT_OP

#include "operators/kernel/concat_kernel.h"

namespace paddle_mobile {
Y
yangfei 已提交
20
namespace operators {
Y
yangfei 已提交
21

Y
yangfei 已提交
22 23
template <>
bool ConcatKernel<GPU_CL, float>::Init(ConcatParam<GPU_CL> *param) {
Y
yangfei 已提交
24 25
  if (param->Out()->dims().size() < 4) {
    this->cl_helper_.AddKernel("concatByH", "concat_kernel.cl");
Y
yangfei 已提交
26 27 28
  } else if (param->Out()->dims().size() == 4) {
    this->cl_helper_.AddKernel("concatByC0", "concat_kernel.cl");
    this->cl_helper_.AddKernel("concatByC", "concat_kernel.cl");
Y
yangfei 已提交
29
  }
Y
yangfei 已提交
30 31
  return true;
}
Y
yangfei 已提交
32

Y
yangfei 已提交
33
template <>
Y
yangfei 已提交
34
void ConcatKernel<GPU_CL, float>::Compute(const ConcatParam<GPU_CL> &param) {
Y
yangfei 已提交
35 36
  DLOG << "yangfei50";
  DLOG << param.Out()->dims();
Y
yangfei 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  if (param.Out()->dims().size() < 4) {
    auto kernel = this->cl_helper_.KernelAt(0);
    auto inputs = param.Inputs();
    auto *output_image = param.Out()->GetCLImage();
    int out_W = 0;
    if (param.Out()->dims().size() == 3) {
      out_W = param.Out()->dims()[2];
    } else if (param.Out()->dims().size() == 2) {
      out_W = param.Out()->dims()[1];
    }
    int out_H_Start = 0;
    for (int i = 0; i < inputs.size(); i++) {
      auto input_image = inputs[i]->GetCLImage();
      auto default_work_size = this->cl_helper_.DefaultWorkSize(*inputs[i]);
      cl_int status;
      status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_image);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_image);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 2, sizeof(int), &out_W);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel, 3, sizeof(int), &out_H_Start);
      CL_CHECK_ERRORS(status);
      status = clEnqueueNDRangeKernel(
          this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
          NULL, default_work_size.data(), NULL, 0, NULL, NULL);
      CL_CHECK_ERRORS(status);
      if (param.Out()->dims().size() == 3) {
        out_H_Start += inputs[i]->dims()[1];
      } else if (param.Out()->dims().size() == 2) {
        out_H_Start += inputs[i]->dims()[0];
      }
    }
Y
yangfei 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  } else {
    auto kernel0 = this->cl_helper_.KernelAt(0);
    auto kernel1 = this->cl_helper_.KernelAt(1);
    auto inputs = param.Inputs();
    auto *output_image = param.Out()->GetCLImage();

    int out_C_Start = 0;
    auto input_image = inputs[0]->GetCLImage();
    auto default_work_size = this->cl_helper_.DefaultWorkSize(*inputs[0]);
    int out_W = param.Out()->dims()[3];
    cl_int status;
    status = clSetKernelArg(kernel0, 0, sizeof(cl_mem), &input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel0, 1, sizeof(cl_mem), &output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel0, 2, sizeof(int), &out_W);
    CL_CHECK_ERRORS(status);
    status = clEnqueueNDRangeKernel(
        this->cl_helper_.CLCommandQueue(), kernel0, default_work_size.size(),
        NULL, default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
    out_C_Start += inputs[0]->dims()[1];
    for (int i = 1; i < inputs.size(); i++) {
      auto input_image1 = inputs[i - 1]->GetCLImage();
      auto input_image2 = inputs[i]->GetCLImage();
      default_work_size = this->cl_helper_.DefaultWorkSize(*inputs[i]);
      int out_C = param.Out()->dims()[1];
      int out_H = param.Out()->dims()[2];
      int in_W = inputs[i]->dims()[3];
      int in_H = inputs[i]->dims()[2];
      int in_C1 = inputs[i - 1]->dims()[1];
      int in_C2 = inputs[i]->dims()[1];
      DLOG << "第" << i << "个";
      DLOG << "out_C=" << out_C;
      DLOG << "out_H=" << out_H;
      DLOG << "in_W=" << in_W;
      DLOG << "in_H=" << in_H;
      DLOG << "in_C1=" << in_C1;
      DLOG << "in_C2=" << in_C2;
      DLOG << "out_C_Start = " << out_C_Start;
      status = clSetKernelArg(kernel1, 0, sizeof(cl_mem), &input_image1);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 1, sizeof(cl_mem), &input_image2);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 2, sizeof(cl_mem), &output_image);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 3, sizeof(int), &out_C);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 4, sizeof(int), &out_H);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 5, sizeof(int), &out_W);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 6, sizeof(int), &out_C_Start);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 7, sizeof(int), &in_W);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 8, sizeof(int), &in_H);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 9, sizeof(int), &in_C1);
      CL_CHECK_ERRORS(status);
      status = clSetKernelArg(kernel1, 10, sizeof(int), &in_C2);
      CL_CHECK_ERRORS(status);

      status = clEnqueueNDRangeKernel(
          this->cl_helper_.CLCommandQueue(), kernel1, default_work_size.size(),
          NULL, default_work_size.data(), NULL, 0, NULL, NULL);
      CL_CHECK_ERRORS(status);

      out_C_Start += inputs[i]->dims()[1];
    }
Y
yangfei 已提交
140 141
  }
}
Y
yangfei 已提交
142

Y
yangfei 已提交
143
}  // namespace operators
Y
yangfei 已提交
144 145 146
}  // namespace paddle_mobile

#endif