elementwise_add_buffer_compute.cc 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/elementwise_add_buffer_compute.h"
#include <memory>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ElementwiseAddCompute::PrepareForRun() {
  auto& context = ctx_->As<OpenCLContext>();
  context.cl_context()->AddKernel(
      kernel_func_name_, "buffer/elementwise_add_kernel.cl", build_options_);
  ele_param_ = param_.get_mutable<param_t>();
  UpdateParams();
}

void ElementwiseAddCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  auto* x_buf = ele_param_->X->template data<float, cl::Buffer>();
  auto* y_buf = ele_param_->Y->template data<float, cl::Buffer>();
  auto* out_buf = ele_param_->Out->template mutable_data<float, cl::Buffer>(
      TARGET(kOpenCL));
  STL::stringstream kernel_key;
  kernel_key << kernel_func_name_ << build_options_;
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
44
#ifndef LITE_SHUTDOWN_LOG
45 46 47
  VLOG(4) << TargetToStr(ele_param_->X->target());
  VLOG(4) << TargetToStr(ele_param_->Y->target());
  VLOG(4) << TargetToStr(ele_param_->Out->target());
48
#endif
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  int arg_idx = 0;
  cl_int status = kernel.setArg(arg_idx, *x_buf);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *y_buf);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *out_buf);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, (const int)batch_);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, (const int)channels_);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, (const int)num_);
  CL_CHECK_FATAL(status);

  auto global_work_size = cl::NDRange{channels_, batch_};
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_buf, event_);
}

void ElementwiseAddCompute::UpdateParams() {
  auto axis = ele_param_->axis;
  const auto& x_dims = ele_param_->X->dims();
  const auto& y_dims = ele_param_->Y->dims();
  const auto& out_dims = ele_param_->Out->dims();
  if (axis < 0) {
    axis = static_cast<int>(x_dims.size() - y_dims.size());
  }
  for (int i = 0; i < axis; ++i) {
    batch_ *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    channels_ *= y_dims[i];
  }
  for (int i = static_cast<int>(y_dims.size() + axis); i < x_dims.size(); ++i) {
    num_ *= x_dims[i];
  }
92
#ifndef LITE_SHUTDOWN_LOG
93 94 95 96
  VLOG(4) << "axis: " << axis;
  VLOG(4) << "batch: " << batch_;
  VLOG(4) << "channels: " << channels_;
  VLOG(4) << "num: " << num_;
97
#endif
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
}

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;

REGISTER_LITE_KERNEL(
    elementwise_add, kOpenCL, kFloat, kNCHW, ocl::ElementwiseAddCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();