conv_op.h 5.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
H
HappyAngel 已提交
16
#include <memory>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <string>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/operators/op_params.h"
#include "lite/utils/all.h"

namespace paddle {
namespace lite {
namespace operators {

class ConvOpLite : public OpLite {
 public:
  ConvOpLite() {}

  explicit ConvOpLite(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override;
37
  bool InferShapeImpl() const override;
Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49

  // TODO(Superjomn) replace framework::OpDesc with a lite one.
  bool AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) override {
    auto X = op_desc.Input("Input").front();
    auto Filter = op_desc.Input("Filter").front();
    auto Out = op_desc.Output("Output").front();

    param_.x = scope->FindVar(X)->GetMutable<lite::Tensor>();
    param_.filter = scope->FindVar(Filter)->GetMutable<lite::Tensor>();
    param_.output = scope->FindVar(Out)->GetMutable<lite::Tensor>();

    param_.strides = op_desc.GetAttr<std::vector<int>>("strides");
H
HappyAngel 已提交
50
    auto paddings = op_desc.GetAttr<std::vector<int>>("paddings");
Y
Yan Chunwei 已提交
51
    param_.groups = op_desc.GetAttr<int>("groups");
H
HappyAngel 已提交
52 53
    auto dilations = op_desc.GetAttr<std::vector<int>>("dilations");
    param_.dilations = std::make_shared<std::vector<int>>(dilations);
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

    // optional params
    std::vector<std::string> input_arg_names = op_desc.InputArgumentNames();
    if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") !=
        input_arg_names.end()) {
      auto bias_arguments = op_desc.Input("Bias");
      if (bias_arguments.size() > 0) {
        auto bias_var = scope->FindVar(bias_arguments.front());
        if (bias_var != nullptr) {
          param_.bias =
              const_cast<lite::Tensor*>(&(bias_var->Get<lite::Tensor>()));
        }
      }
    }
    if (std::find(input_arg_names.begin(),
                  input_arg_names.end(),
                  "ResidualData") != input_arg_names.end()) {
      auto res_data_arguments = op_desc.Input("ResidualData");
      if (res_data_arguments.size() > 0) {
        auto residual_data_var = scope->FindVar(res_data_arguments.front());
        if (residual_data_var != nullptr) {
          param_.residualData = const_cast<lite::Tensor*>(
              &(residual_data_var->Get<lite::Tensor>()));
        }
      }
    }
80 81 82 83 84 85 86

    if (op_desc.HasAttr("with_act") && op_desc.GetAttr<bool>("with_act")) {
      param_.activation_param.has_active = true;
      auto act_type = op_desc.GetAttr<std::string>("act_type");
      if (act_type == "relu") {
        param_.activation_param.active_type = lite_api::ActivationType::kRelu;
        param_.fuse_relu = true;
87 88 89 90
      } else if (act_type == "relu6") {
        param_.activation_param.active_type = lite_api::ActivationType::kRelu6;
        param_.activation_param.Relu_clipped_coef =
            op_desc.GetAttr<float>("fuse_brelu_threshold");  // 6.f
91 92 93 94 95 96 97 98 99
      } else if (act_type == "leaky_relu") {
        param_.activation_param.active_type =
            lite_api::ActivationType::kLeakyRelu;
        param_.activation_param.Leaky_relu_alpha =
            op_desc.GetAttr<float>("leaky_relu_alpha");
      } else {
        CHECK(false)
            << "The fused conv only supports fuse with relu and leaky relu";
      }
Y
Yan Chunwei 已提交
100
    }
101 102 103 104

    if (op_desc.HasAttr("padding_algorithm")) {
      padding_algorithm_ = op_desc.GetAttr<std::string>("padding_algorithm");
    }
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111 112 113 114 115 116
    // For Int8
    if (op_desc.HasAttr("enable_int8")) {
      param_.enable_int8 = op_desc.GetAttr<bool>("enable_int8");
      if (op_desc.HasAttr("input_scale"))
        param_.input_scale = op_desc.GetAttr<float>("input_scale");
      if (op_desc.HasAttr("weight_scale"))
        param_.weight_scale =
            op_desc.GetAttr<std::vector<float>>("weight_scale");
      if (op_desc.HasAttr("output_scale")) {
        param_.output_scale = op_desc.GetAttr<float>("output_scale");
      }
    }
H
HappyAngel 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130

    // 2-pad to 4-pad
    if (paddings.size() == 2L) {
      for (size_t i = 0; i < param_.strides.size(); ++i) {
        int copy_pad = *(paddings.begin() + 2 * i);
        paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
      }
    } else {
      if (paddings.size() != 4L) {
        LOG(FATAL)
            << "Paddings size should be the same or twice as the input size.";
      }
    }
    param_.paddings = std::make_shared<std::vector<int>>(paddings);
Y
Yan Chunwei 已提交
131 132 133 134 135 136 137 138 139
    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "conv2d"; }

 private:
  mutable ConvParam param_;
140
  std::string padding_algorithm_{""};
Y
Yan Chunwei 已提交
141
};
142 143 144 145 146 147 148
// update padding dilation
void UpdatePaddingAndDilation(std::vector<int>* paddings,
                              std::vector<int>* dilations,
                              const std::vector<int>& strides,
                              const std::string padding_algorithm,
                              const lite::DDim data_dims,
                              const lite::DDim& ksize);
Y
Yan Chunwei 已提交
149 150 151
}  // namespace operators
}  // namespace lite
}  // namespace paddle