fusion_deconv_add_op.h 4.1 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_DECONVADD_OP
#pragma once
#include <string>
#include <vector>

#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/deconv_add_kernel.h"

namespace paddle_mobile {
namespace operators {
using std::string;
using std::vector;
class FusionDeconvAddMatcher : public framework::FusionOpMatcher {
 public:
  FusionDeconvAddMatcher() {
    node_ = framework::Node(G_OP_TYPE_CONV_TRANSPOSE);
    node_ > std::make_shared<framework::Node>(G_OP_TYPE_ELEMENTWISE_ADD);
  }

  void FolderNodes(
      framework::Node *node,
      std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
37 38
    node->Folder(node_.Depth(), Type(),
                 {{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}}}}, removed_nodes);
qnqinan's avatar
qnqinan 已提交
39 40 41 42 43 44 45
  }

  std::string Type() { return G_OP_TYPE_FUSION_DECONV_ADD; }
};

template <typename DeviceType, typename T>
class FusionDeconvAddOp : public framework::OperatorWithKernel<
46 47
                              DeviceType, FusionDeconvAddParam<DeviceType>,
                              operators::DeconvAddKernel<DeviceType, T>> {
qnqinan's avatar
qnqinan 已提交
48 49
 public:
  FusionDeconvAddOp(const string &type, const VariableNameMap &inputs,
50 51 52
                    const VariableNameMap &outputs,
                    const framework::AttributeMap &attrs,
                    std::shared_ptr<framework::Scope> scope)
qnqinan's avatar
qnqinan 已提交
53 54 55
      : framework::OperatorWithKernel<
            DeviceType, FusionDeconvAddParam<DeviceType>,
            operators::DeconvAddKernel<DeviceType, T>>(type, inputs, outputs,
56
                                                       attrs, scope) {}
qnqinan's avatar
qnqinan 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  void InferShape() const {
    auto input = this->param_.Input();
    auto in_dims = input->dims();

    auto filter = this->param_.Filter();
    auto filter_dims = filter->dims();

    std::vector<int> strides = this->param_.Strides();
    std::vector<int> paddings = this->param_.Paddings();
    std::vector<int> dilations = this->param_.Dilations();

    int groups = this->param_.Groups();

    PADDLE_MOBILE_ENFORCE(
        in_dims.size() == 4 || in_dims.size() == 5,
        "ConvTransposeOp intput should be 4-D or 5-D tensor.");
    PADDLE_MOBILE_ENFORCE(
        in_dims.size() == filter_dims.size(),
        "ConvTransposeOp input dimension and filter dimension "
        "should be the same.");
    PADDLE_MOBILE_ENFORCE(
        in_dims.size() - strides.size() == 2U,
        "ConvTransposeOp input dimension and strides dimension should "
        "be consistent.");
    PADDLE_MOBILE_ENFORCE(paddings.size() == strides.size(),
                          "ConvTransposeOp paddings dimension and strides "
                          "dimension should be the same.");
    PADDLE_MOBILE_ENFORCE(paddings.size() == dilations.size(),
                          "ConvTransposeOp paddings dimension and dilations "
                          "dimension should be the same.");
    PADDLE_MOBILE_ENFORCE(
        in_dims[1] == filter_dims[0],
        "In ConvTransposeOp, The number of input channels should "
        "be equal to the number of filter's channels.");

    std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
    for (size_t i = 0; i < strides.size(); ++i) {
      auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
      output_shape.push_back((in_dims[i + 2] - 1) * strides[i] -
                             2 * paddings[i] + filter_extent);
    }
    this->param_.Output()->Resize(framework::make_ddim(output_shape));
  }

 protected:
};

}  // namespace operators
}  // namespace paddle_mobile

#endif  // FUSION_DECONV_ADD_OP