context.h 11.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "lite/utils/any.h"
#ifdef LITE_WITH_CUDA
19 20
#include "lite/backends/cuda/blas.h"
#include "lite/backends/cuda/cuda_utils.h"
Y
Yan Chunwei 已提交
21 22 23 24
#endif
#ifdef LITE_WITH_OPENCL
#include <gflags/gflags.h>
#include <unordered_map>
25 26
#include "lite/backends/opencl/cl_context.h"
#include "lite/backends/opencl/cl_runtime.h"
Y
Yan Chunwei 已提交
27 28
#endif
#ifdef LITE_WITH_NPU
29
#include "lite/backends/npu/npu_helper.h"
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37
#endif

#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
38
#include "lite/core/device_info.h"
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#include "lite/core/target_wrapper.h"
#include "lite/core/tensor.h"
#include "lite/utils/all.h"

#ifdef LITE_WITH_OPENCL
DECLARE_string(cl_path);
#endif

namespace paddle {
namespace lite {

template <TargetType Type>
class Context;

using HostContext = Context<TargetType::kHost>;
using X86Context = Context<TargetType::kX86>;
using CUDAContext = Context<TargetType::kCUDA>;
using ARMContext = Context<TargetType::kARM>;
using NPUContext = Context<TargetType::kNPU>;
using OpenCLContext = Context<TargetType::kOpenCL>;
using FPGAContext = Context<TargetType::kFPGA>;

template <>
class Context<TargetType::kHost> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(HostContext* ctx) {}

  std::string name() const { return "HostContext"; }
};

#ifdef LITE_WITH_NPU
template <>
class Context<TargetType::kNPU> {
 public:
  Context() {}
  explicit Context(const NPUContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
  void CopySharedTo(NPUContext* ctx) {}

  NPUContext& operator=(const NPUContext& ctx) {}
  std::string name() const { return "NPUContext"; }
  hiai::AiModelMngerClient* client(const std::string& model_name) const {
    return npu::DeviceInfo::Global().client(model_name);
  }
};
#endif

#ifdef LITE_WITH_ARM
template <>
class Context<TargetType::kARM> {
 public:
  Context() {}
  explicit Context(const ARMContext& ctx);

  ARMContext& operator=(const ARMContext& ctx) {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { DeviceInfo::Init(); }

  void CopySharedTo(ARMContext* ctx) {}

104
  void SetRunMode(lite_api::PowerMode mode, int threads) {
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111
    return DeviceInfo::Global().SetRunMode(mode, threads);
  }
  void SetCache(int l1size, int l2size, int l3size) {
    return DeviceInfo::Global().SetCache(l1size, l2size, l3size);
  }
  void SetArch(ARMArch arch) { return DeviceInfo::Global().SetArch(arch); }

112
  lite_api::PowerMode mode() const { return DeviceInfo::Global().mode(); }
Y
Yan Chunwei 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  int threads() const { return DeviceInfo::Global().threads(); }
  ARMArch arch() const { return DeviceInfo::Global().arch(); }
  int l1_cache_size() const { return DeviceInfo::Global().l1_cache_size(); }
  int l2_cache_size() const { return DeviceInfo::Global().l2_cache_size(); }
  int l3_cache_size() const { return DeviceInfo::Global().l3_cache_size(); }
  int llc_size() const { return DeviceInfo::Global().llc_size(); }
  bool has_dot() const { return DeviceInfo::Global().has_dot(); }
  bool has_fp16() const { return DeviceInfo::Global().has_fp16(); }

  template <typename T>
  T* workspace_data() {
    return DeviceInfo::Global().workspace_data<T>();
  }

  bool ExtendWorkspace(size_t size) {
    return DeviceInfo::Global().ExtendWorkspace(size);
  }

  std::string name() const { return "ARMContext"; }
};
#endif

#ifdef LITE_WITH_FPGA
// TODO(tianxiaogang): add needed implementation to context
template <>
class Context<TargetType::kFPGA> {
 public:
  Context() {}
  void InitOnce() {}

  FPGAContext& operator=(const FPGAContext& ctx) {}

  void CopySharedTo(FPGAContext* ctx) {}

  std::string name() const { return "FPGAContext"; }
};
#endif

#ifdef LITE_WITH_CUDA
// Only works with CUDA kernels.
template <>
class Context<TargetType::kCUDA> {
 public:
156 157
  typename Env<TargetType::kCUDA>::Devs& devs =
      Env<TargetType::kCUDA>::Global();
Y
Yan Chunwei 已提交
158 159 160 161
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {
    cublas_fp32_ = std::make_shared<lite::cuda::Blas<float>>();
  }
162
  void Init(int dev_id, int exec_stream_id = 0, int io_stream_id = 0) {
163
    CHECK_GT(devs.size(), 0UL)
164
        << "Env is not initialized or current target is not exit!";
165
    if (dev_id >= static_cast<int>(devs.size())) {
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
      LOG(WARNING) << "device index exceeds the number of devices, set to "
                      "default device(0)!";
      device_id_ = 0;
    } else {
      device_id_ = dev_id;
    }
    if (io_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "data stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      io_stream_id = 0;
    }
    if (exec_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "exec stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      exec_stream_id = 0;
    }
Y
Yan Chunwei 已提交
182

183 184 185 186 187 188
    exec_stream_ = devs[dev_id].exec_streams()[exec_stream_id];
    io_stream_ = devs[dev_id].io_streams()[io_stream_id];

    exec_stream_id_ = exec_stream_id;
    io_stream_id_ = io_stream_id;
  }
Y
Yan Chunwei 已提交
189 190 191 192 193 194
  void CopySharedTo(CUDAContext* ctx) {
    CHECK(ctx);
    CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
    ctx->cublas_fp32_ = cublas_fp32_;
  }

195
  const cudaStream_t& exec_stream() const { return exec_stream_; }
Y
Yan Chunwei 已提交
196 197
  void SetExecStream(cudaStream_t stream) { exec_stream_ = stream; }

198
  const cudaStream_t& io_stream() const { return io_stream_; }
Y
Yan Chunwei 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
  void SetIoStream(cudaStream_t stream) { io_stream_ = stream; }

  std::shared_ptr<cuda::Blas<float>> cublas_fp32() { return cublas_fp32_; }
  void SetCuBlasFP32(std::shared_ptr<cuda::Blas<float>> cublas_fp32) {
    cublas_fp32_ = cublas_fp32;
  }

  const std::vector<cudaEvent_t>& input_events() { return input_events_; }
  void SetInputEvents(const std::vector<cudaEvent_t>& input_events) {
    input_events_.clear();
    input_events_.assign(input_events.begin(), input_events.end());
  }

  const std::vector<cudaEvent_t>& output_events() { return output_events_; }
  void SetOutputEvents(const std::vector<cudaEvent_t>& output_events) {
    output_events_.clear();
    output_events_.assign(output_events.begin(), output_events.end());
  }

  std::string name() const { return "CUDAContext"; }

 private:
221
  int device_id_;
Y
Yan Chunwei 已提交
222
  // overall information
223 224
  int exec_stream_id_;
  int io_stream_id_;
Y
Yan Chunwei 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  cudaStream_t exec_stream_;
  cudaStream_t io_stream_;

  // not thread-safe, should allocate for each thread.
  std::shared_ptr<cuda::Blas<float>> cublas_fp32_;

  // kernel information
  std::vector<cudaEvent_t> input_events_;
  std::vector<cudaEvent_t> output_events_;
};
#endif

#ifdef LITE_WITH_X86
template <>
class Context<TargetType::kX86> {
 public:
  Context() {}

  Context(Context&& ctx) {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(X86Context* ctx) {}

  std::string name() const { return "X86Context"; }

 private:
  // overall information
  //
  // kernel information
};
#endif

#ifdef LITE_WITH_OPENCL
template <>
class Context<TargetType::kOpenCL> {
  std::shared_ptr<CLContext> cl_context_;
  using WaitListType =
264
      std::unordered_map<decltype(static_cast<const void*>(nullptr)),
Y
Yan Chunwei 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                         std::shared_ptr<cl::Event>>;
  std::shared_ptr<WaitListType> cl_wait_list_;

 public:
  CLContext* cl_context() { return cl_context_.get(); }
  WaitListType* cl_wait_list() { return cl_wait_list_.get(); }

  void InitOnce() {
    // Init cl runtime.
    CHECK(CLRuntime::Global()->IsInitSuccess()) << "OpenCL runtime init failed";
    CLRuntime::Global()->set_cl_path(FLAGS_cl_path);

    cl_context_ = std::make_shared<CLContext>();
    cl_wait_list_ = std::make_shared<WaitListType>();
  }

  void CopySharedTo(OpenCLContext* ctx) {
    ctx->cl_context_ = cl_context_;
    ctx->cl_wait_list_ = cl_wait_list_;
  }
};
#endif

// Context for running a kernel.
// Holds the necessary resource and information.
class KernelContext {
 public:
  template <typename ContextT>
  ContextT& As() {
    if (!ctx_.valid()) {
      ctx_.set<ContextT>();
    }
    return *ctx_.get_mutable<ContextT>();
  }

 private:
  Any ctx_;
};

// The ContextScheduler helps to assign different context for each kernel.
class ContextScheduler {
 public:
  static ContextScheduler& Global() {
    static auto* x = new ContextScheduler;
    return *x;
  }

  std::unique_ptr<KernelContext> NewContext(TargetType target) {
    std::unique_ptr<KernelContext> ctx(new KernelContext);
    switch (target) {
      case TARGET(kHost):
        kernel_contexts_[TargetType::kHost].As<HostContext>().CopySharedTo(
            &ctx->As<HostContext>());
        break;
#ifdef LITE_WITH_X86
      case TARGET(kX86):
        kernel_contexts_[TargetType::kX86].As<X86Context>().CopySharedTo(
            &ctx->As<X86Context>());
        break;
#endif
#ifdef LITE_WITH_CUDA
326 327 328 329
      case TARGET(kCUDA): {
        int dev_id = TargetWrapper<TargetType::kCUDA>::GetCurDevice();
        auto& context = ctx->As<CUDAContext>();
        context.Init(dev_id);
Y
Yan Chunwei 已提交
330
        kernel_contexts_[TargetType::kCUDA].As<CUDAContext>().CopySharedTo(
331 332
            &context);
      } break;
Y
Yan Chunwei 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#endif
#ifdef LITE_WITH_ARM
      case TARGET(kARM):
        kernel_contexts_[TargetType::kARM].As<ARMContext>().CopySharedTo(
            &ctx->As<ARMContext>());
        break;
#endif
#ifdef LITE_WITH_NPU
      case TARGET(kNPU):
        kernel_contexts_[TargetType::kNPU].As<NPUContext>().CopySharedTo(
            &ctx->As<NPUContext>());
        break;
#endif
#ifdef LITE_WITH_OPENCL
      case TARGET(kOpenCL):
        kernel_contexts_[TargetType::kOpenCL].As<OpenCLContext>().CopySharedTo(
            &ctx->As<OpenCLContext>());
        break;
#endif
#ifdef LITE_WITH_FPGA
      case TARGET(kFPGA):
        kernel_contexts_[TargetType::kFPGA].As<FPGAContext>().CopySharedTo(
            &ctx->As<FPGAContext>());
        break;
#endif
      default:
359
#ifndef LITE_ON_MODEL_OPTIMIZE_TOOL
Y
Yan Chunwei 已提交
360
        LOG(FATAL) << "unsupported target " << TargetToStr(target);
361 362
#endif
        break;
Y
Yan Chunwei 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    }
    return ctx;
  }

 private:
  template <TargetType Type, typename ContextT>
  void InitContext() {
    kernel_contexts_[Type].As<ContextT>().InitOnce();
  }

  ContextScheduler() {
    InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
    InitContext<TargetType::kX86, X86Context>();
#endif
#ifdef LITE_WITH_CUDA
    InitContext<TargetType::kCUDA, CUDAContext>();
#endif
#ifdef LITE_WITH_ARM
    InitContext<TargetType::kARM, ARMContext>();
#endif
#ifdef LITE_WITH_OPENCL
    InitContext<TargetType::kOpenCL, OpenCLContext>();
#endif
#ifdef LITE_WITH_FPGA
    InitContext<TargetType::kFPGA, FPGAContext>();
#endif
#ifdef LITE_WITH_NPU
    InitContext<TargetType::kNPU, NPUContext>();
#endif
  }

 private:
  std::map<TargetType, KernelContext> kernel_contexts_;
};

}  // namespace lite
}  // namespace paddle