conv_kernel.cpp 4.1 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

L
liuruilong 已提交
15 16
#ifdef CONV_OP

朔-望's avatar
朔-望 已提交
17
#include "operators/kernel/conv_kernel.h"
18
#include "operators/kernel/central-arm-func/conv_arm_func.h"
朔-望's avatar
朔-望 已提交
19 20

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
21 22
namespace operators {

L
liuruilong 已提交
23
template <>
N
nhzlx 已提交
24
bool ConvKernel<CPU, float>::Init(ConvParam<CPU> *param) {
H
hjchen2 已提交
25 26 27 28
  if (param->Filter()->type() == typeid(int8_t)) {
    if (param->Groups() == param->Input()->dims()[1] &&
        param->Input()->dims()[1] == param->Output()->dims()[1] &&
        param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
29 30
        param->Filter()->dims()[2] == 3 && param->Strides()[0] < 3 &&
        param->Strides()[0] == param->Strides()[1]) {
H
hjchen2 已提交
31 32 33 34
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8;
    } else {
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_INT8;
    }
H
hjchen2 已提交
35 36 37 38 39 40 41 42 43 44 45
  } else {
    if (param->Groups() == param->Input()->dims()[1] &&
        param->Input()->dims()[1] == param->Output()->dims()[1] &&
        param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
        param->Filter()->dims()[2] == 3 && param->Strides()[0] == 1) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT;
    } else if (param->Groups() == param->Input()->dims()[1] &&
               param->Input()->dims()[1] == param->Output()->dims()[1] &&
               param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
               param->Filter()->dims()[2] == 3) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3_FLOAT;
H
hjchen2 已提交
46
#ifndef __aarch64__
H
hjchen2 已提交
47 48 49 50 51
    } else if (param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
               param->Strides()[0] == param->Strides()[1] &&
               param->Dilations()[0] == param->Dilations()[1] &&
               param->Filter()->dims()[2] == 3 && param->Strides()[0] == 1 &&
               param->Dilations()[0] == 1 && param->Output()->dims()[1] >= 16 &&
52 53
               param->Input()->dims()[1] >= 16 &&
               param->Input()->dims()[2] <= 140 /* refered from ncnn */) {
H
hjchen2 已提交
54 55 56 57 58 59
      param->ExecMode() = ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT;
      // transform weight
      framework::Tensor *transformed_weight = new framework::Tensor;
      operators::math::winograd_transform_weight<8, 3>(*param->Filter(),
                                                       transformed_weight);
      param->Filter() = transformed_weight;
H
hjchen2 已提交
60
#endif
H
hjchen2 已提交
61 62 63 64
    } else {
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_FLOAT;
    }
  }
L
liuruilong 已提交
65 66 67
  return true;
}

朔-望's avatar
朔-望 已提交
68
template <>
L
liuruilong 已提交
69
void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) {
H
hjchen2 已提交
70 71 72
  switch (param.ExecMode()) {
    case ConvParam<CPU>::EXEC_GEMM_INT8:
      GemmConv<int8_t, int32_t>(param);
H
hjchen2 已提交
73 74 75
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8:
      DepthwiseConv3x3<int8_t, int32_t>(param);
H
hjchen2 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT:
      math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                                 nullptr, false);
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_FLOAT:
      math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                             param.Filter(), nullptr, param.Output(), false);
      break;
    case ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<8, 3>(param);
      break;
    case ConvParam<CPU>::EXEC_GEMM_FLOAT:
      GemmConv<float, float>(param);
      break;
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
朔-望's avatar
朔-望 已提交
95 96
}

97
template class ConvKernel<CPU, float>;
朔-望's avatar
朔-望 已提交
98

朔-望's avatar
朔-望 已提交
99 100
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
101 102

#endif