proposal_kernel.cpp 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PROPOSAL_OP

#include <algorithm>
#include <cmath>
#include <vector>
#include "operators/kernel/detection_kernel.h"

namespace paddle_mobile {
namespace operators {

static const double kBBoxClipDefault = std::log(1000.0 / 16.0);

template <>
bool ProposalKernel<FPGA, float>::Init(ProposalParam<FPGA> *param) {
  int post_nms_top_n = param->post_nms_topn_;
  int64_t batch = param->scores_->dims()[0];
  auto total = post_nms_top_n * batch;
  param->rpn_rois_->mutable_data<float>({total, 4});
  param->rpn_probs_->mutable_data<float>({total, 1});

  param->float_bbox = std::make_shared<Tensor>();
  param->float_bbox->Resize(param->bbox_deltas_->dims());
  param->float_bbox->init(type_id<float>().hash_code());
  fpga::format_fp32_ofm(param->float_bbox.get());
  param->float_score = std::make_shared<Tensor>();
  param->float_score->Resize(param->scores_->dims());
  param->float_score->init(type_id<float>().hash_code());
  fpga::format_fp32_ofm(param->float_score.get());

44
  auto input = param->scores_;
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  param->score_index_ = std::make_shared<Tensor>();
  param->score_index_->mutable_data<int32_t>({input->numel()});
  auto score_index = param->score_index_->data<int32_t>();
  for (int i = 0; i < input->numel(); ++i) {
    score_index[i] = i;
  }

  return true;
}
template <typename T>
void CPUGather(const Tensor &src, const Tensor &index, Tensor *output) {
  PADDLE_MOBILE_ENFORCE(index.dims().size() == 1 ||
                            (index.dims().size() == 2 && index.dims()[1] == 1),
                        "Dim not correct");
  int64_t index_size = index.dims()[0];

  auto src_dims = src.dims();

  const T *p_src = src.data<T>();
  const int *p_index = index.data<int>();
  T *p_output = output->data<T>();

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

  const size_t slice_bytes = slice_size * sizeof(T);

  for (int64_t i = 0; i < index_size; ++i) {
    int index_ = p_index[i];
    memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
  }
}

void AppendProposals(Tensor *dst, int64_t offset, const Tensor &src) {
  auto *out_data = dst->data<void>();
  auto *to_add_data = src.data<void>();
  size_t size_of_t = framework::SizeOfType(src.type());
  offset *= size_of_t;
  std::memcpy(
      reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(out_data) + offset),
      to_add_data, src.numel() * size_of_t);
}

template <class T>
static inline void BoxCoder(Tensor *all_anchors, Tensor *bbox_deltas,
                            Tensor *variances, Tensor *proposals) {
  T *proposals_data = proposals->mutable_data<T>();

  int64_t row = all_anchors->dims()[0];
  int64_t len = all_anchors->dims()[1];

  auto *bbox_deltas_data = bbox_deltas->data<T>();
  auto *anchor_data = all_anchors->data<T>();
  const T *variances_data = nullptr;
  if (variances) {
    variances_data = variances->data<T>();
  }

  for (int64_t i = 0; i < row; ++i) {
    T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0;
    T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0;

    T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width;
    T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height;

    T bbox_center_x = 0, bbox_center_y = 0;
    T bbox_width = 0, bbox_height = 0;

    bbox_center_x = bbox_deltas_data[i * len] * anchor_width + anchor_center_x;
    bbox_center_y =
        bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y;
    bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width;
    bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height;

    proposals_data[i * len] = bbox_center_x - bbox_width / 2;
    proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2;
    proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2;
    proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2;
  }
}

template <class T>
static inline void ClipTiledBoxes(const Tensor &im_info, Tensor *boxes) {
  T *boxes_data = boxes->mutable_data<T>();
  const T *im_info_data = im_info.data<T>();
  T zero(0);
  for (int64_t i = 0; i < boxes->numel(); ++i) {
    if (i % 4 == 0) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
    } else if (i % 4 == 1) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
    } else if (i % 4 == 2) {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[1] - 1), zero);
    } else {
      boxes_data[i] =
          std::max(std::min(boxes_data[i], im_info_data[0] - 1), zero);
    }
  }
}

template <class T>
static inline void FilterBoxes(Tensor *boxes, float min_size,
                               const Tensor &im_info, Tensor *keep) {
  const T *im_info_data = im_info.data<T>();
  T *boxes_data = boxes->mutable_data<T>();
  T im_scale = im_info_data[2];
  keep->Resize({boxes->dims()[0]});
  min_size = std::max(min_size, 1.0f);
  int *keep_data = keep->mutable_data<int>();

  int keep_len = 0;
  for (int i = 0; i < boxes->dims()[0]; ++i) {
    T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1;
    T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1;
    T ws_origin_scale =
        (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1;
    T hs_origin_scale =
        (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1;
    T x_ctr = boxes_data[4 * i] + ws / 2;
    T y_ctr = boxes_data[4 * i + 1] + hs / 2;
    if (ws_origin_scale >= min_size && hs_origin_scale >= min_size &&
        x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

template <class T>
static inline std::vector<std::pair<T, int>> GetSortedScoreIndex(
    const std::vector<T> &scores) {
  std::vector<std::pair<T, int>> sorted_indices;
  sorted_indices.reserve(scores.size());
  for (size_t i = 0; i < scores.size(); ++i) {
    sorted_indices.emplace_back(scores[i], i);
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                   [](const std::pair<T, int> &a, const std::pair<T, int> &b) {
                     return a.first < b.first;
                   });
  return sorted_indices;
}

template <class T>
static inline T BBoxArea(const T *box, bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <typename T>
static inline Tensor VectorToTensor(const std::vector<T> &selected_indices,
                                    int selected_num) {
  Tensor keep_nms;
  keep_nms.Resize({selected_num});
  auto *keep_data = keep_nms.mutable_data<T>();
  for (int i = 0; i < selected_num; ++i) {
    keep_data[i] = selected_indices[i];
  }
  return keep_nms;
}

template <class T>
static inline T JaccardOverlap(const T *box1, const T *box2, bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = std::max(T(0), inter_xmax - inter_xmin + 1);
    const T inter_h = std::max(T(0), inter_ymax - inter_ymin + 1);
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <class T>
static inline Tensor NMS(Tensor *bbox, Tensor *scores, T nms_threshold,
                         float eta, int post_nms_num = 100) {
  int64_t num_boxes = bbox->dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox->dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores->data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices =
      GetSortedScoreIndex<T>(scores_data);

  std::vector<int> selected_indices;
  int selected_num = 0;
  T adaptive_threshold = nms_threshold;
  const T *bbox_data = bbox->data<T>();
  while ((sorted_indices.size() != 0) && (selected_num < post_nms_num)) {
    int idx = sorted_indices.back().second;
    bool flag = true;
    for (int kept_idx : selected_indices) {
      if (flag) {
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, false);
        flag = (overlap <= adaptive_threshold);
      } else {
        break;
      }
    }
    if (flag) {
      selected_indices.push_back(idx);
      ++selected_num;
    }
    sorted_indices.erase(sorted_indices.end() - 1);
    if (flag && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
  return VectorToTensor(selected_indices, selected_num);
}

template <typename T>
std::pair<Tensor, Tensor> ProposalForOneImage(
    const Tensor &im_info_slice, const Tensor &anchors, const Tensor &variances,
    const Tensor &bbox_deltas_slice,  // [M, 4]
    const Tensor &scores_slice,       // [N, 1]
    const Tensor &score_index, int pre_nms_top_n, int post_nms_top_n,
    float nms_thresh, float min_size, float eta) {
  auto *scores_data = scores_slice.data<T>();

  // Sort index
  Tensor index_t;
  index_t.Resize({scores_slice.numel()});
  int *index = index_t.mutable_data<int>();
  std::memcpy(index, score_index.data<int32_t>(),
              scores_slice.numel() * sizeof(int));

  auto compare = [scores_data](const int64_t &i, const int64_t &j) {
    return scores_data[i] > scores_data[j];
  };

  if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
    std::sort(index, index + scores_slice.numel(), compare);
  } else {
    std::nth_element(index, index + pre_nms_top_n, index + scores_slice.numel(),
                     compare);
    index_t.Resize({pre_nms_top_n});
  }

  Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
  scores_sel.mutable_data<T>({index_t.numel(), 1});
  bbox_sel.mutable_data<T>({index_t.numel(), 4});
  anchor_sel.mutable_data<T>({index_t.numel(), 4});
  var_sel.mutable_data<T>({index_t.numel(), 4});

  CPUGather<T>(scores_slice, index_t, &scores_sel);
  CPUGather<T>(bbox_deltas_slice, index_t, &bbox_sel);
  CPUGather<T>(anchors, index_t, &anchor_sel);
  Tensor proposals;
  proposals.mutable_data<T>({index_t.numel(), 4});
  BoxCoder<T>(&anchor_sel, &bbox_sel, nullptr, &proposals);

  ClipTiledBoxes<T>(im_info_slice, &proposals);

  Tensor keep;
  FilterBoxes<T>(&proposals, min_size, im_info_slice, &keep);

  Tensor scores_filter;
  bbox_sel.mutable_data<T>({keep.numel(), 4});
  scores_filter.mutable_data<T>({keep.numel(), 1});

  CPUGather<T>(proposals, keep, &bbox_sel);
  CPUGather<T>(scores_sel, keep, &scores_filter);
  if (nms_thresh <= 0) {
    return std::make_pair(bbox_sel, scores_filter);
  }

  Tensor keep_nms =
      NMS<T>(&bbox_sel, &scores_filter, nms_thresh, eta, post_nms_top_n);

  if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
    keep_nms.Resize({post_nms_top_n});
  }

  proposals.mutable_data<T>({keep_nms.numel(), 4});   // original
  scores_sel.mutable_data<T>({keep_nms.numel(), 1});  // original

  CPUGather<T>(bbox_sel, keep_nms, &proposals);
  CPUGather<T>(scores_filter, keep_nms, &scores_sel);
  return std::make_pair(proposals, scores_sel);
}

template <>
void ProposalKernel<FPGA, float>::Compute(const ProposalParam<FPGA> &param) {
  auto input_score = param.scores_;
354
  auto input_score_data = input_score->data<int8_t>();
355 356 357
  uint32_t score_n, score_height, score_width, score_channels;

  auto input_bbox = param.bbox_deltas_;
358
  auto input_bbox_data = input_bbox->data<int8_t>();
359 360 361 362 363 364 365 366 367 368 369 370 371 372
  uint32_t bbox_n, bbox_height, bbox_width, bbox_channels;

  score_n = (uint32_t)(input_score->dims()[0]);
  score_channels = (uint32_t)(input_score->dims()[1]);
  score_height = (uint32_t)(input_score->dims()[2]);
  score_width = (uint32_t)(input_score->dims()[3]);

  bbox_n = (uint32_t)(input_bbox->dims()[0]);
  bbox_channels = (uint32_t)(input_bbox->dims()[1]);
  bbox_height = (uint32_t)(input_bbox->dims()[2]);
  bbox_width = (uint32_t)(input_bbox->dims()[3]);

  std::shared_ptr<Tensor> score_tmp = std::make_shared<Tensor>();
  score_tmp->Resize(param.scores_->dims());
373
  score_tmp->mutable_data<int8_t>();
374 375 376

  std::shared_ptr<Tensor> bbox_tmp = std::make_shared<Tensor>();
  bbox_tmp->Resize(param.bbox_deltas_->dims());
377
  bbox_tmp->mutable_data<int8_t>();
378

379 380
  auto score_tmp_data = score_tmp->data<int8_t>();
  auto bbox_tmp_data = bbox_tmp->data<int8_t>();
381 382
  int64_t amount_per_side = score_width * score_height;
  int idx = 0;
383 384 385 386 387
  int alignedCW =
      fpga::align_to_x(score_width * score_channels, IMAGE_ALIGNMENT);
  int unalignedCW = score_width * score_channels;
  fpga::fpga_invalidate(input_score_data,
                        score_height * alignedCW * sizeof(int8_t));
388 389 390
  for (int h = 0; h < score_height; h++) {
    for (int w = 0; w < score_width; w++) {
      for (int c = 0; c < score_channels; c++) {
391 392 393 394 395 396 397 398
        if (alignedCW == unalignedCW) {
          *(score_tmp_data + c * amount_per_side + score_width * h + w) =
              (*(input_score_data++));
        } else {
          idx = h * alignedCW + w * score_channels + c;
          *(score_tmp_data + c * amount_per_side + score_width * h + w) =
              input_score_data[idx];
        }
399 400 401 402
      }
    }
  }
  amount_per_side = bbox_width * bbox_height;
403 404 405 406
  alignedCW = fpga::align_to_x(bbox_width * bbox_channels, IMAGE_ALIGNMENT);
  unalignedCW = bbox_width * bbox_channels;
  fpga::fpga_invalidate(input_bbox_data,
                        bbox_height * alignedCW * sizeof(int8_t));
407 408 409
  for (int h = 0; h < bbox_height; h++) {
    for (int w = 0; w < bbox_width; w++) {
      for (int c = 0; c < bbox_channels; c++) {
410 411 412 413 414 415 416 417
        if (alignedCW == unalignedCW) {
          *(bbox_tmp_data + c * amount_per_side + bbox_width * h + w) =
              (*(input_bbox_data++));
        } else {
          idx = h * alignedCW + w * bbox_channels + c;
          *(bbox_tmp_data + c * amount_per_side + bbox_width * h + w) =
              input_bbox_data[idx];
        }
418 419 420 421 422
      }
    }
  }

  auto score_tensor = param.float_score.get();
423
  for (int i = 0; i < score_height * score_width * score_channels; i++) {
424 425
    score_tensor->data<float>()[i] =
        score_tmp_data[i] / 127.0 * input_score->scale[0];
426
  }
427
  auto bbox_tensor = param.float_bbox.get();
428
  for (int i = 0; i < bbox_height * bbox_width * bbox_channels; i++) {
429 430
    bbox_tensor->data<float>()[i] =
        bbox_tmp_data[i] / 127.0 * input_bbox->scale[0];
431
  }
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  auto *scores = param.float_score.get();
  auto *bbox_deltas = param.float_bbox.get();
  auto *im_info = param.im_info_;
  auto anchors = *param.anchors_;
  auto variances = *param.variances_;

  auto *rpn_rois = param.rpn_rois_;
  auto *rpn_roi_probs = param.rpn_probs_;

  auto score_index = *(param.score_index_.get());

  int pre_nms_top_n = param.pre_nms_topn_;
  int post_nms_top_n = param.post_nms_topn_;

  float nms_thresh = param.nms_thresh_ / 2.0f;
  float min_size = param.min_size_;
  float eta = param.eta_;

  auto &scores_dim = scores->dims();
  int64_t num = scores_dim[0];
  int64_t c_score = scores_dim[1];
  int64_t h_score = scores_dim[2];
  int64_t w_score = scores_dim[3];

  auto &bbox_dim = bbox_deltas->dims();
  int64_t c_bbox = bbox_dim[1];
  int64_t h_bbox = bbox_dim[2];
  int64_t w_bbox = bbox_dim[3];

  //
  rpn_rois->mutable_data<float>({bbox_deltas->numel(), 4});
  rpn_roi_probs->mutable_data<float>({scores->numel(), 1});

  framework::LoD lod;
  lod.resize(1);
  auto &lod0 = lod[0];
  lod0.push_back(0);
  anchors.Resize({anchors.numel(), 4});
  variances.Resize({variances.numel(), 4});

  int64_t num_proposals = 0;
  for (int64_t i = 0; i < num; ++i) {
    Tensor im_info_slice = im_info->Slice(i, i + 1);
    Tensor bbox_deltas_slice = (*bbox_tensor).Slice(i, i + 1);
    Tensor scores_slice = (*score_tensor).Slice(i, i + 1);

    bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox, 4});
    scores_slice.Resize({h_score * w_score * c_score, 1});

    std::pair<Tensor, Tensor> tensor_pair = ProposalForOneImage<float>(
        im_info_slice, anchors, variances, bbox_deltas_slice, scores_slice,
        score_index, pre_nms_top_n, post_nms_top_n, nms_thresh, min_size, eta);
    Tensor &proposals = tensor_pair.first;
    Tensor &scores = tensor_pair.second;

    AppendProposals(rpn_rois, 4 * num_proposals, proposals);
    AppendProposals(rpn_roi_probs, num_proposals, scores);
    num_proposals += proposals.dims()[0];
    lod0.push_back(num_proposals);
  }
  rpn_rois->set_lod(lod);
  rpn_roi_probs->set_lod(lod);
  rpn_rois->Resize({num_proposals, 4});
  rpn_roi_probs->Resize({num_proposals, 1});
}

}  // namespace operators
}  // namespace paddle_mobile

#endif  // PROPOSAL_OP