activation_compute.cc 3.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

L
lhl960107 已提交
15
#include "lite/kernels/x86/activation_compute.h"
Y
Yan Chunwei 已提交
16 17 18 19 20 21 22 23 24 25 26 27

// float
REGISTER_LITE_KERNEL(square,
                     kX86,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::x86::SquareCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();

L
lhl960107 已提交
28 29
// float
REGISTER_LITE_KERNEL(relu,
Y
Yan Chunwei 已提交
30 31 32
                     kX86,
                     kFloat,
                     kNCHW,
L
lhl960107 已提交
33
                     paddle::lite::kernels::x86::ReluCompute<float>,
Y
Yan Chunwei 已提交
34 35
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
L
lhl960107 已提交
36
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
Y
Yan Chunwei 已提交
37
    .Finalize();
38

39 40 41 42 43 44 45 46 47 48 49
// float
REGISTER_LITE_KERNEL(leaky_relu,
                     kX86,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::x86::LeakyReluCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
// float
REGISTER_LITE_KERNEL(tanh,
                     kX86,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::x86::TanhCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();

// float
REGISTER_LITE_KERNEL(gelu,
                     kX86,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::x86::GeluCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();
71 72 73 74 75 76 77 78 79 80

REGISTER_LITE_KERNEL(softsign,
                     kX86,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::x86::SoftsignCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();
81 82 83 84 85 86 87 88 89 90

REGISTER_LITE_KERNEL(sigmoid,
                     kX86,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::x86::SoftsignCompute<float>,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))})
    .Finalize();