elementwise_op_function.h 20.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>
#include <algorithm>
#include <iterator>
#include <vector>
#include "lite/fluid/eigen.h"
#include "lite/fluid/transform.h"
#include "lite/utils/paddle_enforce.h"

#include "lite/backends/x86/math/math_function.h"
#include "lite/fluid/for_range.h"
#include "lite/utils/variant.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
 *
 * New parameter: *mid_flag* is added to solve m*n*k & m*1*k
 * broadcast cases.
 * 3. shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1, 4, 5)
 *    mid_flag should not be NULL.
 *    x.shape(2, 3, 20) * y.shape(2, 1, 20).broadcast(2, 3, 20)
 */
inline void get_mid_dims(const lite::DDim &x_dims,
                         const lite::DDim &y_dims,
                         const int axis,
                         int *pre,
                         int *n,
                         int *post,
                         int *mid_flag = NULL) {
  *pre = 1;
  *n = 1;
  *post = 1;
  if (mid_flag != NULL) {
    *mid_flag = 0;
    int mid = 0;
    for (int i = 0; i < axis; ++i) {
      (*pre) *= x_dims[i];
    }
    for (int i = 0; i < y_dims.size(); ++i) {
      if (x_dims[i + axis] != y_dims[i]) {
        // only support single y_dims[i] = 1 now.
        PADDLE_ENFORCE_EQ(
            *mid_flag, 0, "Broadcast support y_dims with single 1.");
        PADDLE_ENFORCE_EQ(y_dims[i], 1, "Broadcast dimension mismatch.");
        // m*n*k m*1*k
        for (int j = 0; j < i; ++j) {
          (*pre) *= y_dims[j];
        }
        *n = std::max(x_dims[i + axis], y_dims[i]);
        *mid_flag = 1;
        mid = i;
        break;
      }
      (*n) *= y_dims[i];
    }
    if (*mid_flag) {
      for (int i = mid + 1; i < x_dims.size(); ++i) {
        (*post) *= x_dims[i];
      }
    } else {
      for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
        (*post) *= x_dims[i];
      }
    }
  } else {  // for fused_elementwise_activation_op. keep the old version.
    for (int i = 0; i < axis; ++i) {
      (*pre) *= x_dims[i];
    }

    for (int i = 0; i < y_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          x_dims[i + axis], y_dims[i], "Broadcast dimension mismatch.");
      (*n) *= y_dims[i];
    }

    for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
      (*post) *= x_dims[i];
    }
  }
}

inline lite::DDim trim_trailing_singular_dims(const lite::DDim &dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
    return lite::DDim();
  }
  lite::DDim actual_dims = lite::DDim(trim_dims);
  return actual_dims;
}

template <typename T, lite::TargetType Target>
class RowwiseTransformIterator;

template <typename T, lite::TargetType Target>
class MidWiseTransformIterator;

// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
template <typename T>
class RowwiseTransformIterator<T, lite::TargetType::kX86>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, lite::TargetType::kX86> &operator++() {
    ++i_;
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
    return *this;
  }

  RowwiseTransformIterator<T, lite::TargetType::kX86> &operator+(int n) {
    while (n-- > 0) {
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

  bool operator==(
      const RowwiseTransformIterator<T, lite::TargetType::kX86> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(
      const RowwiseTransformIterator<T, lite::TargetType::kX86> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int i_;
  int64_t n_;
};

template <typename T>
class MidWiseTransformIterator<T, lite::TargetType::kX86>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  MidWiseTransformIterator(const T *ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, lite::TargetType::kX86> &operator++() {
    ++j_;
    if (UNLIKELY(j_ == post_)) {
      ++i_;
      j_ = 0;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }
    return *this;
  }

  MidWiseTransformIterator<T, lite::TargetType::kX86> &operator+(int n) {
    while (n-- > 0) {
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

  bool operator==(
      const MidWiseTransformIterator<T, lite::TargetType::kX86> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(
      const MidWiseTransformIterator<T, lite::TargetType::kX86> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int64_t i_;
  int64_t j_;
  int64_t n_;
  int64_t post_;
};

template <typename Functor,
          typename T,
          lite::TargetType Target,
          typename OutType = T>
class TransformFunctor {
 public:
  TransformFunctor(const lite::Tensor *x,
                   const lite::Tensor *y,
                   lite::Tensor *z,
                   const lite::Context<Target> &ctx,
                   Functor func)
H
huzhiqiang 已提交
251 252
      : x_(x->template data<T>()),
        y_(y->template data<T>()),
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
        z_(z->mutable_data<OutType>()),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
    lite::fluid::Transform<Target> trans;
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
  }

  inline void RunRowWise(int n, int pre) const {
    lite::fluid::Transform<Target> trans;
    trans(ctx_,
          x_,
          x_ + nx_,
          RowwiseTransformIterator<T, Target>(y_, n),
          z_,
          func_);
  }

  inline void RunMidWise(int n, int pre, int post) const {
    lite::fluid::Transform<Target> trans;
    trans(ctx_,
          x_,
          x_ + nx_,
          MidWiseTransformIterator<T, Target>(y_, n, post),
          z_,
          func_);
  }

  inline void RunMidRowWise(int n, int pre, int post) const {
    lite::fluid::Transform<Target> trans;
    for (int i = 0; i < pre; i++) {
      trans(ctx_,
            x_ + i * n * post,
            x_ + (i + 1) * n * post,
            RowwiseTransformIterator<T, Target>(y_ + i * post, post),
            z_ + i * n * post,
            func_);
    }
  }

 private:
  const T *x_;
  const T *y_;
  OutType *z_;
  int64_t nx_;
  const lite::Context<Target> &ctx_;
  Functor func_;
};

template <typename Functor,
          lite::TargetType Target,
          typename T,
          typename OutType = T>

void ElementwiseComputeEx(const lite::Context<Target> &ctx,
                          const lite::Tensor *x,
                          const lite::Tensor *y,
                          int axis,
                          Functor func,
                          lite::Tensor *z) {
  TransformFunctor<Functor, T, Target, OutType> functor(x, y, z, ctx, func);
  auto x_dims = x->dims();
  auto y_dims_untrimed = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(),
                    y_dims_untrimed.size(),
                    "Rank of first input must >= rank of second input.");
  if (x_dims == y_dims_untrimed) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims_untrimed.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");
  auto y_dims = trim_trailing_singular_dims(y_dims_untrimed);
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
  int pre, n, post, mid_flag = 0;
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post, &mid_flag);
  if (mid_flag) {
    functor.RunMidRowWise(n, pre, post);
    return;
  }
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T,
          typename CompoundFunctor,
          bool BcastY,
          bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x,
                                             const T *y,
                                             CompoundFunctor compound_functor,
                                             int h,
                                             int w,
                                             T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T,
          typename CompoundFunctor,
          bool BcastY,
          bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x,
                                             const T *y,
                                             int pre,
                                             int n,
                                             int post,
                                             CompoundFunctor compound_functor,
                                             T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

template <lite::TargetType Target,
          typename T,
          typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(const lite::Context<Target> &ctx,
                                           const lite::DDim &x_dim,
                                           const lite::Tensor &x,
                                           const lite::Tensor &y,
                                           CompoundFunctor compound_functor,
                                           lite::Tensor *out,
                                           lite::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(x_dim.production());

  lite::fluid::ForRange<Target> for_range(ctx, N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(),
          y.data<T>(),
          compound_functor,
H
huzhiqiang 已提交
486 487 488 489
          out->template mutable_data<T>(),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->template mutable_data<T>()});
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
}

template <lite::TargetType Target,
          typename T,
          typename CompoundFunctor,
          bool BcastY,
          bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(const lite::Context<Target> &ctx,
                                             const lite::DDim &x_dim,
                                             const lite::DDim &y_dim_untrimed,
                                             const lite::Tensor &x,
                                             const lite::Tensor &y,
                                             CompoundFunctor compound_functor,
                                             int axis,
                                             lite::Tensor *out,
                                             lite::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);

  if (post == 1) {
    int h = pre;
    int w = n;
    FusedElemwiseAndActBroadcast1CPU<T,
                                     CompoundFunctor,
                                     BcastY,
                                     KeepIntermediateOut,
                                     SameShapeOfIntermediateOutAndOut>(
        x.data<T>(),
        y.data<T>(),
        compound_functor,
        h,
        w,
H
huzhiqiang 已提交
527 528 529 530
        out->template mutable_data<T>(),
        intermediate_out == nullptr
            ? nullptr
            : intermediate_out->template mutable_data<T>());
531 532 533 534 535 536 537 538 539 540 541 542 543

  } else {
    FusedElemwiseAndActBroadcast2CPU<T,
                                     CompoundFunctor,
                                     BcastY,
                                     KeepIntermediateOut,
                                     SameShapeOfIntermediateOutAndOut>(
        x.data<T>(),
        y.data<T>(),
        pre,
        n,
        post,
        compound_functor,
H
huzhiqiang 已提交
544 545 546 547
        out->template mutable_data<T>(),
        intermediate_out == nullptr
            ? nullptr
            : intermediate_out->template mutable_data<T>());
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
  }
}

template <lite::TargetType Target,
          typename T,
          typename CompoundFunctor,
          bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const lite::Context<Target> &ctx,
                                  const lite::Tensor &x,
                                  const lite::Tensor &y,
                                  int axis,
                                  CompoundFunctor compound_functor,
                                  lite::Tensor *out,
                                  lite::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out,
                   "The save_intermediate_out is opened, "
                   "intermediate_out should not be nullptr.");
  }

  const lite::DDim &x_dim = x.dims();
  const lite::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<Target,
                                          T,
                                          CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
    bool bcast_y = x.dims().size() >= y.dims().size();
    if (x.dims().size() == y.dims().size()) {
      for (int i = 0; i < x.dims().size(); ++i) {
        if (x.dims()[i] < y.dims()[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<Target,
                                              T,
                                              CompoundFunctor,
                                              true /*BcastY*/,
                                              KeepIntermediateOut,
                                              SameShapeOfIntermediateOutAndOut>(
          ctx,
          x_dim /*OutShape*/,
          y_dim,
          x,
          y,
          compound_functor,
          axis,
          out,
          intermediate_out);
    } else {
      // In this case,
      // for 'f2(y)', the shape of intermediate_out should be equal to the
      // shape
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<Target,
                                              T,
                                              CompoundFunctor,
                                              false /*BcastY*/,
                                              KeepIntermediateOut,
                                              SameShapeOfIntermediateOutAndOut>(
          ctx,
          y_dim /*OutShape*/,
          x_dim,
          x,
          y,
          compound_functor,
          axis,
          out,
          intermediate_out);
    }
  }
}

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle