paddle_mobile_jni.cpp 7.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef ANDROID

#include "paddle_mobile_jni.h"
D
dolphin8 已提交
18
#include <cmath>
19 20 21 22
#include "common/log.h"
#include "framework/tensor.h"
#include "io/paddle_mobile.h"

W
wangliu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef __cplusplus
extern "C" {
#endif
namespace paddle_mobile {
namespace jni {
using framework::DDim;
using framework::Program;
using framework::Tensor;
using paddle_mobile::CPU;
using std::string;

extern const char *ANDROID_LOG_TAG =
    "paddle_mobile LOG built on " __DATE__ " " __TIME__;
36
static PaddleMobile<CPU> *shared_paddle_mobile_instance = nullptr;
W
wangliu 已提交
37 38 39 40

// toDo mutex lock
// static std::mutex shared_mutex;

41 42 43
PaddleMobile<CPU> *getPaddleMobileInstance() {
  if (nullptr == shared_paddle_mobile_instance) {
    shared_paddle_mobile_instance = new PaddleMobile<CPU>();
W
wangliu 已提交
44
  }
45
  return shared_paddle_mobile_instance;
W
wangliu 已提交
46 47 48 49 50 51 52 53 54 55 56 57
}

string jstring2cppstring(JNIEnv *env, jstring jstr) {
  const char *cstr = env->GetStringUTFChars(jstr, 0);
  string cppstr(cstr);
  env->ReleaseStringUTFChars(jstr, cstr);
  return cppstr;
}

JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_load(JNIEnv *env,
                                                          jclass thiz,
                                                          jstring modelPath) {
58
  ANDROIDLOGI("load invoked");
W
wangliu 已提交
59
  bool optimize = true;
60 61
  return getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                         optimize);
W
wangliu 已提交
62 63
}

64 65 66 67 68 69 70 71 72
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadQualified(
    JNIEnv *env, jclass thiz, jstring modelPath) {
  ANDROIDLOGI("loadQualified invoked");
  bool optimize = true;
  bool qualified = true;
  return getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                         optimize, qualified);
}

73 74
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombined(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
75
  ANDROIDLOGI("loadCombined invoked");
76 77 78 79 80 81
  bool optimize = true;
  return getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                         jstring2cppstring(env, paramPath),
                                         optimize);
}

82 83 84 85 86 87 88 89 90 91
JNIEXPORT jboolean JNICALL Java_com_baidu_paddle_PML_loadCombinedQualified(
    JNIEnv *env, jclass thiz, jstring modelPath, jstring paramPath) {
  ANDROIDLOGI("loadCombinedQualified invoked");
  bool optimize = true;
  bool qualified = true;
  return getPaddleMobileInstance()->Load(jstring2cppstring(env, modelPath),
                                         jstring2cppstring(env, paramPath),
                                         optimize, qualified);
}

W
wangliu 已提交
92 93
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictImage(
    JNIEnv *env, jclass thiz, jfloatArray buf, jintArray ddims) {
94 95
  ANDROIDLOGI("predictImage invoked");
  jsize ddim_size = env->GetArrayLength(ddims);
W
wangliu 已提交
96 97
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
98 99
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
W
wangliu 已提交
100 101
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
102
  int length = framework::product(ddim);
W
wangliu 已提交
103 104 105 106 107 108 109 110 111
  jfloatArray result = NULL;
  int count = 0;
  float *dataPointer = nullptr;
  if (nullptr != buf) {
    dataPointer = env->GetFloatArrayElements(buf, NULL);
  }
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
112
  for (int i = 0; i < length; i++) {
W
wangliu 已提交
113 114
    input_ptr[i] = dataPointer[i];
  }
115
  auto output = shared_paddle_mobile_instance->Predict(input);
W
wangliu 已提交
116 117 118
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
W
wangliu 已提交
119
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
120
  ANDROIDLOGI("predictImage finished");
W
wangliu 已提交
121 122 123
  return result;
}

W
wangliu 已提交
124 125 126 127
inline int yuv_to_rgb(int y, int u, int v, float *r, float *g, float *b) {
  int r1 = (int)(y + 1.370705 * (v - 128));
  int g1 = (int)(y - 0.698001 * (u - 128) - 0.703125 * (v - 128));
  int b1 = (int)(y + 1.732446 * (u - 128));
128

W
wangliu 已提交
129 130 131 132 133 134
  r1 = (int)fminf(255, fmaxf(0, r1));
  g1 = (int)fminf(255, fmaxf(0, g1));
  b1 = (int)fminf(255, fmaxf(0, b1));
  *r = r1;
  *g = g1;
  *b = b1;
135

W
wangliu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  return 0;
}
void convert_nv21_to_matrix(uint8_t *nv21, float *matrix, int width, int height,
                            int targetWidth, int targetHeight, float *means) {
  const uint8_t *yData = nv21;
  const uint8_t *vuData = nv21 + width * height;

  const int yRowStride = width;
  const int vuRowStride = width;

  float scale_x = width * 1.0 / targetWidth;
  float scale_y = height * 1.0 / targetHeight;

  for (int j = 0; j < targetHeight; ++j) {
    int y = j * scale_y;
    const uint8_t *pY = yData + y * yRowStride;
    const uint8_t *pVU = vuData + (y >> 1) * vuRowStride;
    for (int i = 0; i < targetWidth; ++i) {
      int x = i * scale_x;
      const int offset = ((x >> 1) << 1);
      float r = 0;
      float g = 0;
      float b = 0;
      yuv_to_rgb(pY[x], pVU[offset + 1], pVU[offset], &r, &g, &b);
      int r_index = j * targetWidth + i;
      int g_index = r_index + targetWidth * targetHeight;
      int b_index = g_index + targetWidth * targetHeight;
      matrix[r_index] = r - means[0];
      matrix[g_index] = g - means[1];
      matrix[b_index] = b - means[2];
166
    }
W
wangliu 已提交
167 168
  }
}
169

W
wangliu 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
JNIEXPORT jfloatArray JNICALL Java_com_baidu_paddle_PML_predictYuv(
    JNIEnv *env, jclass thiz, jbyteArray yuv_, jint imgwidth, jint imgHeight,
    jintArray ddims, jfloatArray meanValues) {
  ANDROIDLOGI("predictYuv invoked");
  jsize ddim_size = env->GetArrayLength(ddims);
  if (ddim_size != 4) {
    ANDROIDLOGE("ddims size not equal to 4");
  }
  jint *ddim_ptr = env->GetIntArrayElements(ddims, NULL);
  framework::DDim ddim = framework::make_ddim(
      {ddim_ptr[0], ddim_ptr[1], ddim_ptr[2], ddim_ptr[3]});
  int length = framework::product(ddim);
  float matrix[length];
  jbyte *yuv = env->GetByteArrayElements(yuv_, NULL);
  float *meansPointer = nullptr;
  if (nullptr != meanValues) {
    meansPointer = env->GetFloatArrayElements(meanValues, NULL);
  }
  convert_nv21_to_matrix((uint8_t *)yuv, matrix, imgwidth, imgHeight, ddim[3],
                         ddim[2], meansPointer);
  jfloatArray result = NULL;
  int count = 0;
  framework::Tensor input;
  input.Resize(ddim);
  auto input_ptr = input.mutable_data<float>();
  for (int i = 0; i < length; i++) {
    input_ptr[i] = matrix[i];
  }
  auto output = shared_paddle_mobile_instance->Predict(input);
  count = output->numel();
  result = env->NewFloatArray(count);
  env->SetFloatArrayRegion(result, 0, count, output->data<float>());
  env->ReleaseByteArrayElements(yuv_, yuv, 0);
  env->ReleaseIntArrayElements(ddims, ddim_ptr, 0);
  env->ReleaseFloatArrayElements(meanValues, meansPointer, 0);
  ANDROIDLOGI("predictYuv finished");
  return result;
207 208
}

209 210 211 212 213 214 215
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_setThread(JNIEnv *env,
                                                           jclass thiz,
                                                           jint threadCount) {
  ANDROIDLOGI("setThreadCount %d", threadCount);
  getPaddleMobileInstance()->SetThreadNum((int)threadCount);
}

W
wangliu 已提交
216
JNIEXPORT void JNICALL Java_com_baidu_paddle_PML_clear(JNIEnv *env,
217 218 219
                                                       jclass thiz) {
  getPaddleMobileInstance()->Clear();
}
W
wangliu 已提交
220 221 222 223 224 225 226 227 228

}  // namespace jni
}  // namespace paddle_mobile

#ifdef __cplusplus
}
#endif

#endif