box_coder_image_compute.cc 6.7 KB
Newer Older
H
HappyAngel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
                                               PRECISION(kFP16),
                                               DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::BoxCoderParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    boxcoder_param_ = param_.get_mutable<param_t>();
    if (boxcoder_param_->code_type == "decode_center_size" &&
        boxcoder_param_->box_normalized == true) {
      kernel_func_name_ = "decode_center_size";
    } else {
44 45
      LOG(FATAL) << "This code_type " << boxcoder_param_->code_type
                 << " doesn't support";
H
HappyAngel 已提交
46 47 48
    }
    CHECK(context.cl_context() != nullptr);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
X
xiebaiyuan 已提交
49 50 51 52
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/box_coder_kernel.cl",
                                    build_options_,
                                    time_stamp_);
H
HappyAngel 已提交
53 54 55 56 57 58 59 60 61 62 63
  }

  void Run() override {
    boxcoder_param_ = param_.get_mutable<param_t>();
    const auto& out_dims = boxcoder_param_->proposals->dims();
    auto image_shape = InitImageDimInfoWith(out_dims);

    auto* out_buf =
        boxcoder_param_->proposals->mutable_data<half_t, cl::Image2D>(
            image_shape["width"], image_shape["height"]);

64
#ifdef LITE_WITH_LOG
H
HappyAngel 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    VLOG(4) << "boxcoder input shape:  ";

#endif
    const auto* input_priorbox = boxcoder_param_->prior_box;
    const auto* input_priorboxvar = boxcoder_param_->prior_box_var;
    const auto* input_targetbox = boxcoder_param_->target_box;
    const auto& code_type = boxcoder_param_->code_type;
    if (code_type == "decode_center_size") {
      auto* prior_box_image = input_priorbox->data<half_t, cl::Image2D>();
      auto* prior_box_var_image =
          input_priorboxvar->data<half_t, cl::Image2D>();
      auto* target_box_image = input_targetbox->data<half_t, cl::Image2D>();

      int new_dims[4] = {1, 1, 1, 1};
      for (int i = 0; i < out_dims.size(); i++) {
        new_dims[4 - out_dims.size() + i] = out_dims[i];
      }
      auto& context = ctx_->As<OpenCLContext>();
      CHECK(context.cl_context() != nullptr);
      STL::stringstream kernel_key;
X
xiebaiyuan 已提交
85
      kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
H
HappyAngel 已提交
86 87 88 89 90 91 92 93 94 95
      auto kernel = context.cl_context()->GetKernel(kernel_key.str());

      auto default_work_size =
          DefaultWorkSize(out_dims,
                          DDim(std::vector<DDim::value_type>{
                              static_cast<int64_t>(image_shape["width"]),
                              static_cast<int64_t>(image_shape["height"])}));

      int out_C = new_dims[1];
      int out_H = new_dims[2];
96
#ifdef LITE_WITH_LOG
H
HappyAngel 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      VLOG(4) << TargetToStr(boxcoder_param_->proposals->target());
      VLOG(4) << "output shape: " << out_dims[0] << ", " << out_dims[1] << ", "
              << out_dims[2] << ", " << out_dims[3];
      VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
              << image_shape["height"];
      VLOG(4) << "out_C = " << out_C;
      VLOG(4) << "out_H = " << out_H;
      VLOG(4) << "default_work_size = " << default_work_size[0] << ", "
              << default_work_size[1] << ", " << default_work_size[2];
#endif
      int arg_idx = 0;
      cl_int status = kernel.setArg(arg_idx++, *prior_box_image);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, *prior_box_var_image);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, *target_box_image);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, *out_buf);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, out_C);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, out_H);
      CL_CHECK_FATAL(status);
      auto global_work_size =
          cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                      static_cast<cl::size_type>(default_work_size[2])};

      status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
          kernel,
          cl::NullRange,
          global_work_size,
          cl::NullRange,
          nullptr,
X
xiebaiyuan 已提交
130
          nullptr);
H
HappyAngel 已提交
131 132
      CL_CHECK_FATAL(status);

133
#ifdef LITE_WITH_LOG
H
HappyAngel 已提交
134 135 136 137 138 139 140 141 142 143
      VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
              << global_work_size[1];
#endif
    }
  }
  std::string doc() { return "Boxcoder using cl::Image, kFP16"; }

  param_t* boxcoder_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{" -DCL_DTYPE_half"};
X
xiebaiyuan 已提交
144
  std::string time_stamp_{GetTimeStamp()};
H
HappyAngel 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
typedef paddle::lite::kernels::opencl::BoxCoderComputeImage BoxCoder_image;

REGISTER_LITE_KERNEL(
    box_coder, kOpenCL, kFP16, kImageDefault, BoxCoder_image, ImageDefault)
    .BindInput("PriorBox",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("PriorBoxVar",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("TargetBox",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("OutputBox",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();