deformable_conv_op.h 6.0 KB
Newer Older
H
HappyAngel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/operators/op_params.h"
#include "lite/utils/all.h"
#ifdef LITE_WITH_PROFILE
#include "lite/api/paddle_place.h"
#endif

namespace paddle {
namespace lite {
namespace operators {

class DeformableConvOpLite : public OpLite {
 public:
  DeformableConvOpLite() {}

  explicit DeformableConvOpLite(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override;
  bool InferShapeImpl() const override;

#ifdef LITE_WITH_PROFILE
  void GetOpRuntimeInfo(paddle::lite::profile::OpCharacter* ch) {
    auto filter_dims = param_.conv_param.filter->dims();
    auto input_dims = param_.x->dims();
    auto output_dims = param_.output->dims();
    ch->input_shape = ch->DimToStr(input_dims);
    ch->output_shape = ch->DimToStr(output_dims);
    ch->filter_shape = ch->DimToStr(filter_dims);
    ch->remark =
        std::to_string(filter_dims[2]) + "x" + std::to_string(filter_dims[3]) +
        "p" + std::to_string((*param_.conv_param.paddings)[0]) + "s" +
        std::to_string(param_.conv_param.strides[0]) + "g" +
        std::to_string(param_.conv_param.groups) + "d" +
        std::to_string((*param_.conv_param.dilations)[0]) +
        (param_.conv_param.bias ? "Bias" : "") +
        ActivationTypeToStr(param_.conv_param.activation_param.active_type);
    // MACs = 2.f * kw * kh * batchsize * out_c * out_h * out_w * in_c / group
    // GMACs = 1e-9f * MACs
    // GMACPS = 1e-6f * MACs / predict_ms
    ch->macs = 2.f * filter_dims[2] * filter_dims[3] *
               output_dims.production() * input_dims[1] /
               param_.conv_param.groups;
  }
#endif

  // TODO(Superjomn) replace framework::OpDesc with a lite one.
  bool AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) override {
    AttachParam(&param_);
    auto X = op_desc.Input("Input").front();
    auto Filter = op_desc.Input("Filter").front();
    auto Mask = op_desc.Input("Mask").front();
    auto Offset = op_desc.Input("Offset").front();
    auto Out = op_desc.Output("Output").front();

    param_.x = scope->FindVar(X)->GetMutable<lite::Tensor>();
    param_.mask = scope->FindVar(Mask)->GetMutable<lite::Tensor>();
    param_.offset = scope->FindVar(Offset)->GetMutable<lite::Tensor>();
    param_.output = scope->FindVar(Out)->GetMutable<lite::Tensor>();
    param_.deformable_groups = op_desc.GetAttr<int>("deformable_groups");
    param_.im2col_step = op_desc.GetAttr<int>("im2col_step");

    param_.conv_param.filter =
        scope->FindVar(Filter)->GetMutable<lite::Tensor>();
    param_.conv_param.strides = op_desc.GetAttr<std::vector<int>>("strides");
86
    std::vector<int> paddings = op_desc.GetAttr<std::vector<int>>("paddings");
H
HappyAngel 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    auto dilations = op_desc.GetAttr<std::vector<int>>("dilations");
    param_.conv_param.groups = op_desc.GetAttr<int>("groups");
    param_.conv_param.dilations = std::make_shared<std::vector<int>>(dilations);

    // 2-pad to 4-pad
    if (paddings.size() == 2L) {
      for (size_t i = 0; i < param_.conv_param.strides.size(); ++i) {
        int copy_pad = *(paddings.begin() + 2 * i);
        paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
      }
    } else {
      if (paddings.size() != 4L) {
        LOG(FATAL)
            << "Paddings size should be the same or twice as the input size.";
      }
    }
    param_.conv_param.paddings = std::make_shared<std::vector<int>>(paddings);

    // optional params
    std::vector<std::string> input_arg_names = op_desc.InputArgumentNames();
    if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") !=
        input_arg_names.end()) {
      auto bias_arguments = op_desc.Input("Bias");
      if (bias_arguments.size() > 0) {
        auto bias_var = scope->FindVar(bias_arguments.front());
        if (bias_var != nullptr) {
          param_.conv_param.bias =
              const_cast<lite::Tensor*>(&(bias_var->Get<lite::Tensor>()));
        }
      }
    }
    if (op_desc.HasAttr("with_act") && op_desc.GetAttr<bool>("with_act")) {
      param_.conv_param.activation_param.has_active = true;
      auto act_type = op_desc.GetAttr<std::string>("act_type");
      if (act_type == "relu") {
        param_.conv_param.activation_param.active_type =
            lite_api::ActivationType::kRelu;
        param_.conv_param.fuse_relu = true;
      } else if (act_type == "relu6") {
        param_.conv_param.activation_param.active_type =
            lite_api::ActivationType::kRelu6;
        param_.conv_param.activation_param.Relu_clipped_coef =
            op_desc.GetAttr<float>("fuse_brelu_threshold");  // 6.f
      } else if (act_type == "leaky_relu") {
        param_.conv_param.activation_param.active_type =
            lite_api::ActivationType::kLeakyRelu;
        param_.conv_param.activation_param.Leaky_relu_alpha =
            op_desc.GetAttr<float>("leaky_relu_alpha");
      } else {
        CHECK(false) << "The fused DeformableConv only supports fuse with relu"
                        "and leaky relu";
      }
    }
    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "DeformableConv2d"; }

 private:
  mutable DeformableConvParam param_;
  std::string padding_algorithm_{""};
};

}  // namespace operators
}  // namespace lite
}  // namespace paddle